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This book focuses on cold habitat microbes as a potential source of elite enzymes 
and secondary metabolites to meet the growing demands of the pharmaceutical, 
food and biotechnological industries. Microbes living in such extremely cold con-
ditions are reported to produce various biomolecules with potential biotechnologi-
cal applications.

The book overviews recent research trends to discover such important biomol-
ecules and also suggests future research directions to discover such elite novel 
biomolecules. 

Salient features:

•	 Covers studies on various biotic communities and abiotic components of 
the soil of terrestrial habitats, with a focus on cold habitats

•	 Discusses various ‘Omic’ approaches: metagenomics and meta-transcriptomics
•	 Lists adaptation strategies adopted by cold-adapted microbes
•	 Highlights various biotechnological and industrially important biomol-

ecules produced by cold-adapted microbes
•	 Explores the role of microbial biofilm in the degradation of microplastics 

in cold habitats
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Preface
Microbes are present everywhere, from extreme cold to hot environments. 
Depending upon the type of environmental stress resisted by microbes, these are 
grouped according to temperature (high temperature: thermophilic, low tempera-
ture: psychrophiles), pH (acidic: acidophiles), salinity (high salinity: halophiles), 
etc. Among the various harsh habitats mentioned here, the microbes surviving 
at low temperatures, i.e., cold habitats, have attracted special attention from 
researchers for study. Cold habitats cover the majority of the Earth. Polar habitats 
like Antarctica and the Arctic, the Tibetan region and the Great Himalayas are 
among the cold habitats. These extreme environments are not very appropriate 
for the survival of human beings. Despite such extreme cold conditions, microbes 
thrive and occupy every corner. It is quite surprising how these microbes survive 
in such extreme environmental conditions. It has been documented in the litera-
ture that most microbes are the same everywhere; it is only a fraction of microbes 
that are endemic to a specific environment. The literature survey reveals that 
microbes have developed some adaptational features to withstand harsh environ-
mental conditions. The adaptations are at the structural and functional levels. 
At the structural level, it could be a change in the percentage and abundance of 
certain amino acids. At the functional level, it could be the production of specific 
enzymes, secondary metabolites or other biomolecules. Such biomolecules can be 
exploited for various pharmaceutical and biotechnological industries.

Microbial diversity is a huge topic, and recent high-throughput sequencing 
techniques have played a vast role in generating data and exploring this hidden 
treasure. There is a need to dispense the data generated by the researchers to other 
scientists under the following lines: (i) to cover studies on various biotic com-
munities and abiotic components of the soil of the terrestrial habitats, with much 
focus on cold habitats; (ii) to highlight various methods/techniques employed to 
explore microbial diversity, as well as the various biogeochemical pathways that 
regulate the soil microbial processes; (iii) to broaden the scope of the soil micro-
biome of cold habitats with various approaches already reported in the literature, 
i.e., metagenomics, metatranscriptomics and meta-proteomics, to get a better idea 
about active communities.

So, various subject experts at the international level were contacted, and the 
most important chapters were screened and accepted based on peer-reviewed 
reports. Accordingly, only 16 chapters were finalized to cover the major theme of 
the book. The chapter-wise synopsis of the book is as follows.

The opening chapter (Chapter 1) of the book overviews the physicochemical 
and biological properties of soil in cold habitats and the adoption of different 
strategies for maintaining soil health. Chapter 2 mentions soil as a host to vari-
ous biotic communities. Chapter 3 discusses the effect of soil characteristics on 
soil microbial biomass and diversity. Chapter 4 highlights mainly the microbial 
diversity of five major cold deserts of the world, namely, the Gobi Desert; the 
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Taklamakan of Eurasia; the Namibian Desert in Africa; the Drass Desert of 
India; and the Atacama Desert of South America. Chapter 5 discusses the diver-
sity of potassium and iron solubilising bacteria in trans-Himalayan soil. Chapter 
6 discusses the potential and responses of microfungi to the dynamics of cold 
environments. Chapter 7 mentions the microbial diversity of rhizosphere soils of 
the Indian Himalayan regions. Chapter 8 mentions the soil microbiome respon-
sible for enhanced crop productivity. Chapter 9 reports the impact of microbial 
biofilm community shifts on the degradation of microplastics in cold habitats. 
Chapter 10 portrays varied adaptive strategies employed by psychrophilic bac-
teria to live in cold habitats alongside their diversity in various spheres of planet 
Earth. Chapter 11 pools the studies on the production of secondary metabolites 
by some of the important psychrophilic soil microbes to report the important 
drug molecules. Chapter 12 describes the application of ‘Omics’ technologies to 
study soil microbiomes. Chapter 13 describes the ecological role of psychrophiles 
and the mechanism of adaptation in various cold ecozones. Chapter 14 describes 
the ecology and remediation of soil as a step toward modern soil biotechnology. 
Chapter 15 presents a new approach to explore the psychrophilic soil microbiome 
through machine learning. Chapter 16 mentions mass spectrometry as an emerg-
ing analytical technique for agriculture in a changing climate.

Puja Gupta
Punjab, India

Mohd. Shahnawaz (Khakii)
Kargil, India
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Introduction
Soil contains a vast number of microbes that work cooperatively to hold nutrients 
in the soil. Different edaphic factors are responsible for modifying the soil micro-
bial communities, thereby influencing soil quality and plant health. Various adap-
tations allow these microbes to cope in different environments, enabling them 
to survive even in hostile conditions that may not be suitable for human beings 
to live. One such harsh environment is extremely cold habitats. The adapted 
microbes produce various biomolecules for adaptation. These biomolecules can 
be exploited for various pharmaceutical and biotechnological industries.

Experts from different parts of the world have contributed 16 chapters in the 
current volume as follows:

	 1.	Chapters 1 and 2 overview the physicochemical, biological properties, 
soil health and biotic communities of soil in cold habitats.

	 2.	Chapters 3 and 4 highlight the impact of soil characteristics on the soil 
microbial biomass and microbial diversity of five major cold deserts 
of the world (the Gobi Desert; the Taklamakan Desert, Eurasia; the 
Namibian Desert, Africa; the Drass Desert, India; and the Atacama 
Desert, South America).

	 3.	Chapters 5 and 6 discuss the diversity of potassium and iron solubilising 
bacteria in trans-Himalayan soil and the responses of microfungi to the 
dynamics of cold environments.

	 4.	Chapters 7 and 8 document the microbial biodiversity of the rhizosphere 
soils in the Himalayan (Indian part) regions and report the soil microbi-
ome for enhanced crop productivity.

	 5.	Chapters 9 and 10 report the impact of microbial biofilm community 
shifts on the degradation of microplastics in cold habitats and portray 
varied adaptive strategies employed by psychrophilic bacteria to live in 
cold habitats.

	 6.	Chapters  11 and 12 pool the studies on the production of secondary 
metabolites by some of the important psychrophilic soil microbes to 
report the important drug molecules and application of ‘Omics’ tech-
nologies to study soil microbiomes.

	 7.	Chapters 13 and 14 describe the ecological role of psychrophiles’ adap-
tation in various cold ecozones and the remediation of soil as a step 
toward modern soil biotechnology.

	 8.	Chapters 15 and 16 present a new approach to exploring the psychro-
philic soil microbiome through machine learning and mass spectrom-
etry as an emerging analytical technique for agriculture in a changing 
climate.
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Ecological role of psychrophiles and adaptation in cold ecozones

13.1 � INTRODUCTION

Microorganisms (viruses, Eukarya, Archaea and Bacteria) play a significant role 
in the recycling of nutrients and are considered as important indicators of a well-
balanced and unperturbed ecosystem.1 Microorganisms having the natural ability 
to conquer extreme environmental conditions like cold are termed psychrophiles, 
from the Greek: psukhros (cold) and philein (love).1,2 The ability to overcome bio-
geographic limitations, responses to different abiotic and biotic parameters, and 
tropism (lifestyle) are other features psychrophiles also possess to conquer their 
immediate environment.1

Psychrophiles can tolerate a wide range of environmental temperatures below 
30 °C because as temperature rises, the rate of enzymatic activities increases, 
which leads to kinetic heat effects, cellular activities and the swift growth of the 
microorganisms.1,2 However, several studies have reported tolerances of microbes 
in varied temperatures, e.g., Methanococcoides burtonii and Methanogenium 
frigidum (15  °C, 18  °C, 23  °C, 28  °C),1 Chusquea subtessellata (4–25  °C),3 
Sphingopyxis alaskensis and haloarchaea (4–10 °C−20 °C).4,5

As per studies, climate change poses a serious biological threat to animal diver-
sity, distribution, forced migration, loss and biological change as well as ecologi-
cal threats: cold, heat, nutrient deficiencies, drought and salinity.6,7 Microbiomes 
and microbial symbionts impact negatively or positively on their host(s), which 
in turn has been found to modify the ecosystem severely. This can be seen in the 
relationship between the severity and incidence of diseases caused by microbes 
in plants.8,9 Some studies10–12 have recounted the impacts of global warming occa-
sioned by climate change on the rise of sea temperatures, which has impacted 
Symbiodinium, the algal coral endosymbiont, although not the bacterial form. In 
addition, plants with this form of association have been shown to possess a high 
level of resistance and adaptation toward drought-abiotic conditions.

Global warming impacts on biodiversity have recently revealed how microbes 
can either acclimatise or adapt to severe conditions or migrate from them. Some 
studies have reported13–15 how symbionts of microbes and mycorrhiza conquer 
their immediate environment (high temperature) and suggested that psychrotro-
phic fungi can thrive better at 10 °C and 20 °C.

In the present chapter, an attempt will be made to discuss the ecological role 
and adaptive mechanism of psychrophiles in various cold ecozones in the follow-
ing aspects: (1) to highlight the ecological role and mode of action of psychro-
philes, (2) to list the genes used by psychrophiles to adapt in the cold environment, 
(3) to discuss the biotechnological potential of psychrophiles and (4) to overview 
the metagenomic properties of psychrophiles in soil.

13.2 � PSYCHROPHILES: THEIR ECOLOGICAL 
ROLE AND MODE OF ACTION

D’Amico et al.2 evaluated the challenges faced by the psychrophiles to proliferate 
and survive at very low environmental temperatures. Psychrophiles’ adaptability 
in various cold ecozones is portrayed in Figure 13.1.

Fo
r P

ers
on

al 
Use

 O
nly



181Ecological role of psychrophiles and adaptation in cold ecozones﻿

Psychrophiles thrive in extreme abiotic conditions – cold, even at 0 °C – in the 
presence of active enzymes, which aid in the sustenance of their biological cell 
cycle.16 Feller16 showed that temperature dependence is usually at a low state dur-
ing the cold period, and the catalytic action is reduced moderately.

Cavicchioli et al.17 stated that about 90% of the biosphere is covered with 
water (temperature ≤5 °C), which sustains several microbial diversities. These 
water bodies span the polar, alpine and deep-sea regions, ecosystems that are 
always cold and harbour psychrophiles. A study18 evaluated the survival tac-
tics used by psychrophiles to cope with the severe cold environment. Ecological 
factors like soil-microbial physiological actions affect the soil composition and 
structure, and a decrease in environmental temperature is one of the leading 
consequences of commercial plant losses globally.19 However, severe cold eco-
systems have been reported to be a good habitat for psychrotolerant and psy-
chrophilic PSB (phosphate solubilising bacteria) that can tolerate several ranges 
of low-temperature settings while still keeping their metabolic activities intact. 
The production and expression of proteins that have antifreeze properties and 
stress-induced DNA segments at reduced temperatures encourage their survival 
instinct during severe cold stress. Psychrophiles can elicit plant development and 
growth by providing phosphorus and essential nutrients to soil that is highly 
deficient, which is a new functional feature of psychrophilic PSB. Plants require 
rhizosphere bacteria while growing under intense or severe environmental con-
ditions. By contrast, it aids to improve their biological performance. In addition, 
the utilisation of psychrophilic PSB mixtures in the form of formulations has 
been reported to be effective in the optimisation of plants in low-temperature 
settings.19 Psychrophiles are also adapted to the cold environment by using 

FIGURE 13.1  Ecological role of psychrophiles and mechanism of adaptation in various 
cold ecozones.
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biomolecules like enzymes and proteins from cell factories characterised by heat 
lability.20 These properties make it essential for psychrophiles’ biomolecules to 
be utilised in cosmetics, detergents, industrial feed and food technologies, and 
molecular and biomedical research. Cold temperature has been known to affect 
biochemical and nucleic processes, folding of proteins, the rate of diffusion and 
porosity of membranes, and the growth of organisms. Psychrophiles are con-
formers with many enzymes that possess crystallographic materials that have 
been widely reported to enable them to adapt to the cold. These structures or 
materials are also characterised to have moderate and low-temperature specific-
ity and stability, which improves the flexibility to prevent freezing effects during 
temperature changes.21

Hassan et al.22 isolated 42 strains of bacteria from a glacier region in Pakistan 
and reported that the fluidity of the Chryseobacterium frigidisoli PB4T’s mem-
brane was significantly affected by exposure to the environment with varied 
temperature. For the analysis of fatty acids and methyl esters, GC-MS (gas chro-
matography/mass spectrometry) was used to characterise them by the liberation 
of the acid-catalysed methanolysis. Gram −ve and Gram +ve groups were culti-
vated at temperatures 5, 15, 25 and 35 °C to ascertain the effect of temperature 
on the fatty acid and cell membrane distribution, like the br-FAs and n-MUFAs 
(branched fatty acids and straight-chain monounsaturated fatty acids), which 
accounted for over 70% of the total analysed fatty acid components.

13.3 � HIGHLIGHTS OF THE VARIOUS RNA GENES USED BY THE 
PSYCHROPHILES TO ADAPT TO THEIR ENVIRONMENT

Psychrophiles acclimatise to cold environments through certain adaptations, e.g., 
production of cold shock proteins, RNA chaperones, RNA helicases, oxidative 
and osmotic stress, synthesis of carotenoids and transformation factors, and pep-
tidoglycan and membrane modifications in compatible solutes.23 The presence of 
these genes is not unique to psychrophiles, but an abundance of such genes has 
been reported in microbes confronting low temperatures. The above-mentioned 
adaptations are discussed briefly in the following.

13.3.1 �C old shock proteins

Bacteria contain numerous cold shock protein (CSP) gene homologs, e.g., ribo-
nuclease, RNA helicase (RNase, DEAD-box) and CSP.8 It is worth stating that not 
all CSP genes are induced by cold.23 CspI, G, CspE, B and CspA of Escherichia 
coli are among the few examples that are stimulated by cold.24 An extremely 
preserved biological component – the nucleic acid acting as a bond region known 
as the cold shock domain (CSD) – is found in CSP.25 CSD has two ribo-nucleo-
protein binding subjects that aid its binding to bull’s eye DNA and RNA.26 CSP 
avoids the establishment of hairpin structures, thereby weakening two-degree 
structures in bull’s eye RNA at a reduced temperature, and enables transcription 
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and translation at low temperatures.27 CSPs were initially identified as vital cold-
induced proteins involved in tolerance to cold stress and playing an important 
role in controlling a wide variety of gene expressions and physiological responses 
in bacteria. However, it has been hypothesised that a few of them participate in 
several cellular functions that support healthy growth and stress adaptation. It has 
been demonstrated that a few CSPs also promote host cell invasion and ethanol, 
osmosis, oxidation, pH, starvation and stress tolerance.

The effects of heat and cold shock on psychrophilic lactic acid microbes were 
studied by Duru.28 The cspA (cold shock protein A) gene was noted as the major 
protein in the genes of the microbes. Besides, cshB and cshBA, the DEAD-box 
ribonucleic acid helicase genes, were also reported to play an important part in the 
response of the psychrotrophic lactic acid bacteria, while the DEAD-box ribonu-
cleic acid helicase contributes to the unwinding and degradation of the ribosome 
and RNA biosynthesis all through the cold shock.28 Some of the CSPs detected 
in mesophiles are expressed constitutively in psychrophiles as cold-acclimation 
proteins (CAPs) to adapt to extremely low temperatures.2

13.3.2 �RNA  chaperones

Chaperones aid in the efficient folding of proteins. Low temperature appears 
to elevate the synthesis of RNA chaperones.4 Cold-adapted chaperones such as 
DnaK,29 GroEL30 and the molecular chaperone IbpA31 when expressed in E. 
coli increase the mesophilic bacterium’s ability to grow at low temperatures. 
Co-chaperonin GroES, chaperonin GroEL, molecular chaperone DnaK, molecu-
lar chaperone IbpA, molecular chaperone HSP90 and molecular chaperone GrpE 
were noted among the chaperones elicited at reduced temperature.32

The TF (ribosome-bound-trigger factor) assists in protein folding.33 The 
vast majority of nascent polypeptides generated by the ribosome interact with 
TF during co-translational processes. TF assists in the folding of the majority 
of proteins (about 70% of all proteins) quickly after synthesis. Interestingly, 
the remaining chaperones were noted to be heat shock proteins (HSPs), but TF 
is a cold shock protein in E. coli.34 Cold-adapted bacteria have been found to 
overexpress TF at low temperatures, whereas HSP chaperones are downregu-
lated.35 The downregulation of chaperones’ HSP in the cold implies that the 
majority of these are produced at transitorily higher ambient temperatures.35 
Certain bacterial species produce the chaperonins Cpn10 60, which aid in their 
adaptation to the evironment.36 The chaperone proteins Hsc66 and TF played 
an important part in the cold shock response,37 with the presence of other pro-
teins important for trehalose, cellular metabolism and the biological manufac-
turing of lipids.

A study on the TRiC chaperonin in the psychrophilic yeast Glaciozyma ant-
arctica revealed that the genes are consistently produced irrespective of cold or 
heat shock. TRiC chaperonin is known to transport denatured luciferase back to 
its active state at low temperatures.38 Reduced ion pair electrostatic interactions 
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are required for efficient protein folding by such chaperones. Besides, non-polar 
amino acids like isoleucine, phenylalanine, leucine, tryptophan and cysteine are 
involved in hydrophobic residues and are modified in the TRiC and TCP1-1 ring 
chaperonin and complex subunits, respectively, as an adaptation to low tempera-
tures. The hydrophobic residues are substituted with hydrophilic residues like glu-
tamine, histidine, lysine, aspartic acid, arginine and serine, increasing the residue 
distance, which eventually assists in cold adaptation; e.g., isoleucine is substituted 
for valine at TRiCa at location 372 in G. antarctica. The isoleucine is put into 
hydrophobic compartments formed by the distanced residues. Interactions with 
aromatic amino acids are also involved that aid in cold adaptation.38 A few psy-
chrophile genomes are reported to have the gene for proline, an osmolyte that is 
known to support the cell’s viscosity and maintain structural integrity. A higher 
concentration of lysine is observed in the genomes of psychrophiles, which retains 
protein flexibility at reduced temperatures.39

13.3.3 �RNA  helicases

RNA helicases are mostly associated with abiotic stress. Low temperature is 
among the most studied biotic stresses. RNA helicases are engaged in the estab-
lishment of cold-adapted ribosomes and RNA degradosomes.40 Such helicases are 
reported to be important for the weakening of RNA and DNA secondary assem-
blies.2 They might help to slow down the RNA secondary assemblies for effective 
transformation in the cold.41 SrmB and CsdA are among the DEAD-box RNA 
helicase family members that are encoded by E. coli. These appear to be involved 
in the adaptation of cells to the cold.42 SrmB contributes to the biosynthesis of ribo-
somes. CsdA is more strongly required at low temperatures than SrmB. The dele-
tion of the csdA gene drastically affects growth at low temperatures.43 Numerous 
biological processes, including mRNA degradation, translation initiation and 
ribosome synthesis, have been attributed to CsdA. It is involved in mRNA deg-
radation, which is the primary mechanism through which it contributes to cold 
acclimatisation. CsdA’s helicase activity is essential at low temperatures. It was 
demonstrated that helicase-deficient CsdA mutants do not complement cold sensi-
tivity.42 The RNA helicases have also been seen to be overexpressed in many psy-
chrophiles, like Exiguobacterium sibiricum,44 Psychrobacter arcticus arcticus,45 
Pseudoalteromonas haloplanktis, Sphingopyxis alaskensis4 and Shewanella 
denitrificans46, at low temperature.47 These underpin that the microbes have 
evolved adaptive strategies at reduced temperatures by the production of proteins. 
Therefore, RNA helicases increase the interactive crosstalk between helicase and 
protein cofactors, modifying the arrangement of functional protein complexes 
under various environmental conditions.40

13.3.4 �O xidative stress and osmotic stress

Increased heat and respiration in cold conditions give rise to oxidative stress. This 
results in the creation of the catalase-peroxidase (KatG) and the biogenesis of the 
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proline use protein (PutA). As a result of these molecules, H2O2 synthesis gradu-
ally increases, activating proteins that inhibit reactive oxygen species (ROS).36 
Some other examples of molecules that are produced in response to OS (oxidative 
stress) are β-lactamase superfam II, catalase peroxiredoxin, glyoxylase or related 
hydrolase, glutathione peroxidase, spermidine synthase, thioredoxin reductase, 
ABC glycine/proline-betaine messenger, ATPase constituent, choline glycine-
betaine transporter, choline-trehalose-6-phosphate synthase, osmoprotectant 
binding protein, trehalose-6-phosphatase and maltooligosyl trehalose synthase. 
Na+/proline-symporter, Na+/H+-antiporters dehydrogenase or related flavoprotein 
are some of the osmotic regulators that are also produced in response to oxidative 
stress. Genes related to osmotic stress like vicR and vicK are thought to be in con-
trol for coping with ecological pressure; resD and resE for oxygen stress; narGHIJ 
and nreABC operon genes for respiration; and ompR and envZ for osmotic operon 
and upshift genes osmVW and osmXY.48

Gas solubility and harmful ROS generation both greatly increase at low tem-
peratures. The presence of many genes encoding dismutases, superoxidase and 
catalases in Colwellia psychrerythraea and Pseudoalteromonas haloplanktis has 
improved the antioxidant capability to combat harsh environmental conditions.2 
LCPFAs (long-chain polyunsaturated fatty acids) like eicosapentaenoic, docosa-
hexaenoic and arachidonic acid are formed at enhanced rates at lower tempera-
tures.49 Long-chain polyunsaturated fatty acids defend the cell membrane against 
ROS, thereby functioning as a shield from OS at a reduced temperature.50

13.3.5 �C arotenoid synthesis enzymes

Psychrophiles synthesise carotenoid pigments in response to fluctuating tem-
peratures to preserve the fluidity and viscosity of the cell-protective structure/
membrane.18 At very low temperatures, the cell membrane is stabilised by the 
carotenoids. The carotenoid biosynthetic pathways in psychrophiles contain genes 
such as crtB, idi, crtZ, crtY and crtI (phytoene synthase, isopentenyl-diphosphate 
delta isomerase, beta-carotene hydroxylase, lycopene beta cyclase and phytoene 
dehydrogenase).39 Non-polar and polar carotenoid pigments are formed by a vari-
ety of Antarctic microbes to control membrane fluidity and help maintain homeo-
viscosity during temperature variations.44 Many research groups have co-related 
the presence of carotenoids with the cold adaptation of microbes.51 These pig-
ments are known to serve a variety of important functions: light harvesting (pho-
tosynthesis by microbes), photoprotection (against UV rays) and antimicrobial.

13.3.6 �T ranscription and translation

Psychrophilic microorganisms adapt to low temperatures by controlling the activ-
ity of certain enzymes, e.g., peptidyl-prolyl cis-trans isomerase, extension factor 
and RNA polymerase. These enzymes are shown to retain action at extremely 
low temperatures in several psychrophilic microorganisms. Protein-folding rates 
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may need to be maintained at low temperatures through overexpression at these 
temperatures.

Previous investigations have demonstrated that microbes control translation at 
low temperatures through the translation initiation factors (IF-3, IF-2 and IF-1).26 
Initiation factors IF-3 greatly favour CSP translation in E. coli.52 Other examples 
of translation factors that are regulated are tRNA-dihydrouridine synthase, thre-
onyl carbamoyl adenosine dehydratase (tRNA A37), GTPase translation initia-
tion factors IF-2 and IF-3, GTPase translation elongation factor EF-Tu and EF-G, 
transcription-blocking protein NusA, transcription-related element helicase of the 
NusB superfamily II RNA and DNA, SNF2 superfamily II RNA helicase, and 
RNA or DNA helicase.32

13.3.7 �M embrane and peptidoglycan modifications

Certain microbes enhance their peptidoglycan production, which eventually 
thickens the peptidoglycan layer, allowing it to withstand low temperatures. For 
instance, Planococcus halocryophilus has an unusual process that results in a 
thickened outer cell wall made of peptidoglycan, choline and calcium carbon-
ate.53 Some microbes additionally have LPS (lipopolysaccharide) structures in 
the outside layer of the cell to adapt to the cold habitat. Short-chain unsaturated 
fatty acids included in the LPS component further increase the fluidity in cold 
settings. Recent transcriptome research revealed that some organisms had larger 
quantities of outer-layer proteins and glycosyltransferases.54 Benforte et al.55 dem-
onstrated impaired growth at reduced temperatures in an Antarctic microbe due 
to a transmutation in the glycosyltransferase wapH gene of LPS. It resulted in 
a decreased ability of Antarctic bacteria to thrive at cold temperatures. Other 
examples of proteins engaged in membrane modification are glycosyltransferases, 
reductase, 3-oxo​acyl-​[acyl​-carr​ier-p​rotei​n]-sy​nthas​e III (KASIII) and 3-oxoacyl-
[acyl-carrier-protein]. Lower growth temperatures also result in a complex content 
of polyunsaturated and unsaturated anteiso-branched fatty acids, cis-unsaturated 
double-bonds, acyl-chain and methyl-branched fatty acids.2 By adding steric 
limitations that alter the packing order or decrease the number of contacts in 
the membrane, this changed composition is expected to play a crucial part in 
improving membrane fluidity. In addition, increasing levels of the big pigments of 
non-polar carotenoids, proteins and lipid groups contribute to increased fluidity 
of membrane structures.56

13.3.8 �C ompatible solutes and related compounds

Osmoprotection and cryoprotection are significantly aided by the presence of 
certain solutes, e.g., betaine, glycine, glycerol, mannitol, sucrose, sorbitol and 
trehalose. Additionally, these solutes act as suppliers of carbon, nitrogen and 
energy.57 Compatible solutes stabilise cellular membranes at cold temperatures, 
lower the cytoplasm’s freezing point, and stop and scavenge free radicals and 
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macromolecule accumulation.58 Nunn et al.59 studied the genome of Colwellia 
psychrerythraea and reported the genes that code for proteins involved in 
the degradation and synthesis of polymers, nitrogen and polyamides. Such 
genes can be viewed as a possible special adaptation to cold conditions.59 
Ghobakhlou et al.60 evaluated the metabolomic scrutiny of the Arctic strain 
N33 (Mesorhizobium sp.) and reported elevated accumulation of valine, threo-
nine and sarcosine when cultivated at 4 °C. The microbe was found to behave 
like a cryoprotectant.

Many bacteria that are native to the cold ecosystem are found to manufac-
ture PHAs (polyhydroxyalkanoates). These are stand-in polymers with significant 
physiological functions. They operate as an active sink of carbon, thus accumulat-
ing and reducing imbalanced growth conditions, nitrogen, and other macro- or 
micronutrients.61 PHAs have ecological significance and give bacteria increased 
survival and resilience to a range of environmental stressors.62 The DNA analysis 
of C. psychrerythraea showed the capacity to produce PHA, which is connected 
to synthesising and breaking down fatty acids.59 Several gene duplications in the 
families of enoyl-CoA hydratase and acyl-CoA dehydrogenase were found, likely 
suggesting the diversity of the PHAs that can be produced.57 The capacity of 
freshwater alpha-, beta- and gammaproteobacterial isolates from Antarctica to 
synthesise PHA was thought to be a common trait at early sites.62 PHB synthesis 
was discovered to be essential for freezing and cold survival and growth, respec-
tively.62 PHB accretion boosted movement and prolonged planktonic cells’ ability 
to survive in the bacteria’s cold-adapted biofilms, indicating that having the abil-
ity to accumulate PHB may provide an adaptive benefit for attachment in those 
environments.62

13.3.9 �A ntifreeze proteins (AFPs)

The AFPs are a structurally varied set of proteins that are crucial in prevent-
ing the production of intracellular and extracellular ice crystals, which would 
otherwise cause cell death.63 These proteins prefer ice and can lower a solution’s 
freezing point without changing the temperature of the solution’s melting point.63 
The process, termed TH (thermal hysteresis), also changes the ice shape foun-
dation, reliant on the protein binding site and the level of ice formation.64 The 
antifreeze and ice-binding proteins allow the cells of microbes to thrive in severe 
cold settings.48 AFPs play distinct functions in various organisms. These function 
by either preventing freezing or increasing tolerance to freezing. Mostly, AFPs 
attach to frozen crystals, impede their growth, and help to prevent ice forma-
tion and re-crystallisation, which keeps the organism from freezing. According 
to Davies et al.,65 the AFPs isolated from microorganisms display a typical tri-
angular helical fold paired with a stretch of °-helical assembly. The previously 
indicated pattern differs noticeably from AFPs produced by other organisms.65 
Gilbert et al.66 showed that the Antarctic lake bacterium Marinomonas primory-
ensis contains AFPs.66
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Muryoi et al.67 reported antifreeze proteins from rhizobacterium strain 
GR12-2 (Pseudomonas putida) in Arctic plants.67 Nine AFP-encoding genes were 
reported by several research teams working on G. antarctica. The gene expres-
sion analysis showed that each AFP has a range of expression levels contingent 
on the environment, temperature and organism.63 It’s interesting to note that just 
two AFP-encoding genes were found in the expressed sequence tags (EST) stud-
ies, one transcript for AFP7 (GaAFP7) being found in the −12 °C library and the 
other for AFP9 (GaAFP9) being found in the 0 °C library. Additionally, quan-
titative PCR (qPCR) analysis was used to support the data and revealed similar 
expression levels.67

13.4 � BIOTECHNOLOGICAL APPLICATION OF PSYCHROPHILES

Margesin and Feller20 examined the use of psychrophiles for environmental 
purposes. Low environmental temperature is common in temperate parts of 
the world. Organisms like microbes that live at this temperature can tolerate 
and conquer their immediate habitat. Such organisms can be employed for the 
manufacture of biological cell factories or biological molecules for the remedia-
tion of wastewater and pollutants ex situ.20 These biological molecules include 
mostly enzymes and proteins with good catalytic actions and definite heat 
lability, which have been found important and useful in industrial applications 
in different areas like cosmetics, detergents, feed and food technologies, and 
medical and biological research. Hamid et al.68 reviewed the potential use of 
psychrophilic yeast for biotechnology. About 7% of the global area is covered 
with cold ecological systems, which are colonised by microbes that are cold 
tolerant. Psychrophilic microorganisms like yeast are important assets in such 
an ecosystem because they have the potential to adapt to a very low tempera-
ture due to their varied physiological activities that could generate cold shock 
proteins and enzymes. So, psychrophilic yeast could be a potential source for 
biotechnological use for the production of industrial food, chemicals, pharma-
ceutical and medical products, and textiles. They can also be used for ecological 
applications to manage environmental stress in plants. Hamid et al.68 recom-
mend further studies on enzymes and cold proteins for better applications in 
other fields like bioengineering.

The microbes that inhabit the frozen or cold environment possess exopoly-
saccharides, polyunsaturated lipids, and proteins in their membranes that enable 
them to conquer the environment successfully.69 Psychrophiles have a great 
pool of cold enzymes that enable them to tolerate a wide range of environmen-
tal temperatures. Due to their biotechnological potential, cold enzymes could 
be employed in a wide range of environmental and industrial uses, like the tex-
tile, domestic, agricultural, cosmetic, biosensor and bioremediation industries, 
and in the manufacture of enzymes and pharmaceutical products.69 In addition, 
the components of their enzymes could also be employed in distant satellite 
planets monitoring to explore the possible existence of life therein through the 
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evidence of the presence of gases. The biopotential of psychrophiles in the food 
and manufacturing industry using cold enzymes like β-mannanases, lipases, 
pullulanases, xylanases, amylases, proteases, pectinase and β-galactosidase 
is highly recommended.70 These enzymes are used to improve the quality of 
certain catalytic effects in food production processes. Biocatalysts or enzymes 
sourced from microbes have been stated to possess potential use for industrial 
applications in the waste management, pharmaceutical, chemical, agriculture 
and food sectors.71 The enzymes from psychrophiles possess strong biochemi-
cal efficiency that will help to lower the time of reaction of the substrate and 
the inputs of energy in the industrial process. The process is cheap, non-toxic 
and eco-friendly, and the use of such biological enzymes from microbes in the 
industrial production of food has also highlighted the need for collaboration 
between industry and academia for the production of an engineered biocata-
lyst that has the potential to take part in a reaction without altering its initial 
process.71

13.5 � SOIL PSYCHROPHILES’ METAGENOMIC PROPERTIES

Low available nutrient contents, low annual precipitation, extreme temperatures, 
low soil moisture and freeze-thaw cycles are all factors that limit microbial activ-
ity in Arctic soils.72 The Bacteroidetes and Proteobacteria are the main taxa in all 
metagenomes involving psychrophiles in the soil of Antarctic lakes.73 In studying 
the consortia of microbes, various CASPs, CIPs and C-RSGs (cold-associated 
general stress-responsive proteins, cold-induced proteins and cold-responsive 
stress genes) in soil, sediment and Antarctic lake metagenomes were also stud-
ied. It was observed that in all samples investigated, Gloeobacter, Haliangium, 
Anaeromyxobacter and Myxococcus were dominant in the soil and lake sediment 
metagenomes. However, genes for exopolysaccharide biosynthesis were dominant 
in Lake Untersee soil metagenomes. In conclusion, it was found that although dif-
ferent consortia of microbes are found in many metagenomes, they share similar 
C-RSGs needed for their sustenance and survival in severe Antarctic settings. In 
Finnish Lapland, a study74 reported that Gram-negative bacteria (Alpha-, Beta- 
and Gammaproteobacteria phyla) are dominant, and 60% of all isolates from 
Arctic tundra soils are Pseudomonads, while the phylum Acidobacteria was rich 
in soils having low pH.75

The Actinobacteria, Bacteroidetes and Proteobacteria were also reported as 
the predominant phylogenetic groups of the glacier ice on topsoil in Northern 
Schneeferner, Germany,76 with some important genera like Stenotrophomonas, 
Cryobacterium, Sphingomonas and Polaromonas. After comparison of all 
pyrosequencing-derived sequences of efficient diversity of the Northern 
Schneeferner glacier, it was observed that some microbial species were 
reported to have similar homologies, such as dicarboxylate metabolism, gly-
oxylate, sucrose, starch, butanoate propanoate and pyruvate. However, some 
of the homologous sequence genes take part in the phosphate-pentose cycle, 
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citrate cycle and gluconeogenesis/glycolysis pathway. It was observed that 
the genes responsible for growth specifically under anaerobic settings were 
detected when the microbe utilised nitrite and/or nitrate as an electron accep-
tor. In addition, several enzymes and compounds essential for a psychrophilic 
lifestyle and adaptation to living in a low-nutrient environment were also 
detected. It has also been recorded that in cold soil environments, ammonia 
oxidisers are known to be present.77 Shen et al.,78 in a metagenomic data com-
parison, investigated the linkage between physiological and genomic charac-
teristics of the psychrophilic bacteria Arthrobacter. The analyses showed that 
the Arthrobacter family comprises a clade with associates having genomic 
characteristics with a strong capacity to reproduce faster due to the possession 
of an amino acid that is projected to reduce the rigidity of a great number of 
proteins by improving enzyme action at reduced temperatures. Together, the 
genomic and physiological traits compel adaptation for a psychrophilic clade 
of Arthrobacter. The metagenomics of bacterial communities in Antarctica, 
using the CRISPR spacer content, revealed that the genus Flavobacterium 
was a major bacterium in all sampling sites,79 whereas another study80 on the 
cold desert soils reported Acinetobacter and Streptomycetes as major phylo-
genetic groups. A group of researchers suggested that soil nutrients, global 
warming/climate change and reduced atmospheric pressure have resulted in 
a significant decline in biodiversity.81 As a consequence of this, the bacterial 
and physio-chemical properties of soil within cold regions of the world, like 
the cold desert of the Himalaya, face severe ecological stress that prompts an 
environmental and biological strategy to survive. In soil at low altitudes and 
extremely cold conditions, Firmicutes and Bacteroidetes were dominant, while 
Bacteroides, Flavobacterium and Cytophaga were found in large quantities 
at the altitude. A similar study by Joshi et al.82 revealed the presence of the 
species Pseudomonas helmanticensis, Pseudomonas mandelii, Brevibacillus 
invocatus and Arthrobacter humicola in the high altitude of the western 
Indian Himalaya. Actinobacteria were reported to be the major phylum in 
the Antarctic tundra soil, and their synergistic relationship with the genera 
Streptomyces, Streptosporangium and Amycolatopsis was also documented.83 
These microbes also possess cellular and cold-active catabolic enzymes with 
potential for catabolic breakdown of lignocellulose.83

13.6 � PSYCHROPHILES’ ADAPTABILITY IN 
VARIOUS COLD ECOZONES

The mechanisms used by psychrophilic PSB in cold ecozones to conquer their 
environment include enzymes, nucleic acids, phospholipids and phytin.19 For 
example, organisms like Pseudomonas azotoformans, Pseudomonas proteo-
lytica, Pseudomonas palleroniana and Pseudomonas aeruginosa. can grow 
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and survive at the temperature range between 15 and 25 ° by the production 
of malic and oxalic acids in the wild, while laboratory-cultured organisms 
released succinic, citric and lactic acids (Table 13.1).19,53 In addition, enzymes 
released by their membranes, such as GED (glucose dehydrogenase), can medi-
ate the released acids, such as gluconic acid, which is an important solubilisa-
tion effect in soil microbiomes.85 The adaptive features are possibly linked to 
the study of the metagenomics, ecozones, climate warming surrounding the 
microbes, and the ecological factors as well as the genes responsible for their 
tolerance limits towards self-preservation and conservation of their innate 
ability (Figure 13. 2).

TABLE 13.1
Psychrophiles’ adaptability in various cold ecozones

Sr. 
No. Species

Type of acids used for 
adaptability Ecozone(s)

1 Fluorescent Pseudomonas sp. Malic, citric, formic, 
succinic, lactic, 
2-ketogluconic, oxalic 
and gluconic acids

The Himalayan cold 
desert86

2 Strain BIHB 723 
(Acinetobacteria 
rhizosphaerae)

Formic, malic, lactic, 
2-ketogluconic, oxalic 
and gluconic acids

The trans-Himalayan cold 
desert87

3 Strain BIHB 783 (Ralmella 
sp.)

Iso-citric, citric and 
gluconic acids

Hippophae rhamnoides 
rhizosphere88

4 Pseudomonas sp. Gluconic acid In samples of glacial ice89

5 Strain AZ17 (Bacillus sp.) 
and strain AZ5 
(Pseudomonas sp.)

Lactic, citric, acetic, 
gluconic and oxalic acids

The rhizosphere of 
chickpea90

6 Bacilli sp. Propionic, succinic, malic, 
citric, lactic and gluconic 
acids

Phosphate rocks in mine 
region and rhizospheres 
of wheat plants91

7 Enterobacter, Serratia, 
Pseudomonas and Pantoea

Fumaric, succinic, 
gluconic, citric and oxalic 
acids

Rhizospheres of wheat 
plants92

8 Paenibacillus sp., 
Burkholderia and Bacillus

Acetic, formic, succinic, 
tartaric, citric, oxalic and 
gluconic acids

Paddy rice field93

9 Serratia plymuthica Acetic acid Soils94

10 Pseudomonas azotoformans, 
Pseudomonas proteolytica, 
Pseudomonas palleroniana 
and Pseudomonas sp.

Succinic, citric, malic and 
lactic acids

High-altitude region of 
Himalayan soil – Indian84
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13.7 � CONCLUSIONS

Based on the preceding discussion, the following conclusions can be drawn:

•	 Psychrophiles have a natural ability to conquer extreme environmental 
conditions like cold. As the temperature rises, the rate of enzymic activi-
ties increases, which leads to kinetic heat effects, cellular activities and 
the swift growth of the microorganisms.

•	 The mechanism of action and the ecological role of psychrophiles 
show that they can proliferate and survive at very low environmental 
temperatures.

•	 Psychrophiles acclimatise to cold environments through certain adapta-
tions, e.g., production of cold shock proteins, RNA chaperones, RNA 
helicases, oxidative and osmotic stress, synthesis of carotenoids, trans-
formation factors, peptidoglycan and membrane modifications in com-
patible solutes.

•	 The cold enzymes could be employed in a wide range of environmental 
and industrial uses, such as the textile, domestic, agricultural, cosmetic, 

FIGURE 13.2  Strategies for psychrophiles’ survival in cold ecozones.
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biosensor and bioremediation industries and in the manufacture of 
enzymes and pharmaceutical products.

•	 Low available nutrient contents, low annual precipitation, extreme tem-
peratures, low soil moisture and freeze-thaw cycles are all factors that 
limit microbial activity in Arctic soils.
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