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Abstract 
 
Cassava (Manihot esculenta Crantz) is a key staple crop for millions of  people 
worldwide, particularly in tropical and subtropical regions. It is well-known for 
its ability to thrive in poor soil and drought conditions, making it a vital resource 
for food security especially in third world nations. However, the economic 
viability of  cassava farming is frequently threatened by microbial pathogens that 
lead to diseases like cassava bacteria blight and root rot. The aim of  this study is 
to carry out molecular characterization and antibiotic characterization of  bacteria 
associated with cassava tubers in the rural communities at Igbariam, Anambra 
state, Nigeria. Cassava tubers were collected from five different farmlands and 
were processed by fermentation. The fermented cassava tubers were cultured in 
MacConkey, cetrimide, and mannitol salt agars. The isolates were identified by 
their morphological features, biochemical tests, DNA analysis and sequencing. 
Antibiotic susceptibility testing was performed on Mueller-Hinton agar after 
standardizing to 0.5 McFarland standard. The diameter of  the zones of  inhibition 
was measured (in mm) after incubation and the results interpreted by EUCAST 
charts. A total of  42 isolates comprising Alcaligenes faecalis (14) 33.3%, Pseudomonas 
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aeruginosa (13) 30.95% and Pseudomonas putida (15) 35.71% were identified. The 
isolates were resistant to cefixime, nitrofurantoin, ampicillin, amoxicillin-
clavulanate, ceftriaxone, imipenem, and cefuroxime. The isolates showed 
sensitivity to gentamicin, azithromycin, ofloxacin and levofloxacin. The findings 
contribute to the understanding of  some microorganisms that make up the 
microbiome associated with cassava tubers. By studying these bacteria, beneficial 
microorganisms that promote plant health, enhance nutrient uptake, or provide 
natural resistance against pathogens can be identified. 

 
Keywords: Cassava, Bacteria, Disease, PCR, DNA analysis 
 
Introduction 
 
Food security remains a pressing issue in both developed and developing 
nations, intensifying global focus on agriculture. Beyond food production, 
agriculture promotes environmental sustainability, biodiversity, and 
economic growth, contributing to hunger eradication, resource 
management, and job creation (Alabi et al., 2011; Obi et al., 2022; Yadav et 
al., 2022; Younas et al., 2022; Chinyere et al., 2022). 

Cassava (Manihot esculenta Crantz or Manihot utilissima Phol), a key crop 
in Africa, Asia, and Latin America, plays a vital role in food and economic 
security (Bayata, 2019; Halake & Chinthapalli, 2020; Simonyan, 2015; Zhou et 
al., 2023). It is widely processed into food products—flour, garri, fufu, 
sweeteners—and industrial items like textiles and adhesives (Adebayo-
Oyetoro et al., 2013; Ono & Taniwaki, 2021). Despite its utility, cassava 
contains toxic compounds such as linamarin and cyanogenic glycosides, 
which require proper processing to avoid health risks (Adebayo-Oyetoro et 
al., 2013). 

Cassava is commercially cultivated due to its nutritional value and 
adaptability for food processing (Balogun et al., 2021; Simonyan, 2015). Its 
high demand underscores the need to understand the microbial 
communities associated with cassava tubers, as these can influence both 
crop health and food safety. Advanced molecular tools like high-
throughput sequencing and metagenomics allow in-depth analysis of  
microbial populations, revealing both culturable and non-culturable 
species (Bokulich et al., 2023; Koren et al., 2023., De Souza et al., 2023; Singh et 
al., 2021). 

Molecular characterization identifies both pathogens and beneficial 
microbes involved in spoilage, storage, and disease resistance. This 
information supports improved breeding and disease management 
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strategies (Oduor et al., 2022; Wu et al., 2023). Integrating techniques such 
as PCR, NGS, and metagenomics is key to sustainable cassava production.  

This study aims to characterize bacterial isolates and their antibiotic 
resistance profiles in cassava tubers from Igbariam, Awkuzu, Ukwulu, 
Umudioka, and Otoko. It will expand the limited data on cassava’s 
microbial ecology and guide future agricultural practices (Marín et al., 
2023). 
 

Materials and Methods 

Study Area 
 
The survey was conducted across five different zones within the Awkuzu 
metropolis and its environs in Anambra State, Nigeria. These zones 
include the cassava farmlands located in Chukwuemeka Odumegwu 
Ojukwu University (COOU), Igbariam; as well as in the communities of  
Awkuzu, Ukwulu, Umudioka, and Otoko. The study area lies within the 

geographical coordinates of  latitudes 5°59.99ꞌ–6°00.00ꞌN and longitudes 

6°13ꞌ–6°56ꞌE (Ezenwaji et al., 2017).  This region is situated in 
Southeastern Nigeria and is known for its significant cassava production, 
owing to its fertile soils and favourable tropical climate. The study was 
carried out between June and August 2024 at the Pharmaceutical 
Microbiology and Biotechnology Laboratory of  the Faculty of  
Pharmaceutical Sciences in the University. 
  
Sample Collection and Processing 
 
Ten cassava tubers were collected from five zones—COOU Igbariam, 
Awkuzu, Ukwulu, Umudioka, and Otoko—in Anambra East LGA, 
Anambra State, Nigeria. Only healthy, insect-free tubers were selected. 
Samples were placed in sterile bags, labeled, and transported to the 
Pharmaceutical Microbiology and Biotechnology Laboratory, COOU 
(Renner et al., 2024). Tubers were aseptically peeled, washed, and cut into 
approximately 3 cm pieces, then fermented in sterile vessels with distilled 

water for four days at 25 °C (Balogun et al., 2022). The samples from the 
soaked cassava water were serially diluted to give tenfold (10-3) dilutions. 
Each 1 ml of  the cassava water sample was agitated with 9 ml of  distilled 
water to ensure a homogenous mixture. Subsequently, a tenfold serial 
dilution of  the homogenates was made in nutrient broth such that each 
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broth diluent test tube contained 9 ml. Afterwards, the broth sample tubes 
were incubated at 35 °C for 24–48 hours (Chetan et al., 2017). 
 
Preparation of Culture Media 
 
All media used in this study were prepared and sterilized according to the 
manufacturer’s instructions. The media used are Nutrient broth, Nutrient 
Agar, MacConkey Agar, Mannitol Salt Agar, Cetrimide Agar and Mueller-
Hinton Agar. 
 
Microbiological analysis 
 
With the aid of sterile syringes, 0.2 ml of the respective diluents of broth-
cultured specimens were aseptically collected and inoculated onto the 
surfaces of the various solidified Nutrient agar plates. Thereafter, it was 
incubated for 24 hours at 37°C. The number of colonies on the plates with 
distinct characteristics after incubation were noted and counted (Nwakoby 
et al., 2021). 
 
Isolation of the Pure Cultures of Bacteria 
 
With the aid of a sterile wire loop, a colony from each respective Nutrient 
agar plates was picked and streaked accordingly in a series of parallel and 
non-overlapping lines on the surfaces of the well-groomed and labeled 
sterile petri dishes containing MacConkey Agar, Mannitol Salt Agar, and 
Cetrimide Agar, and incubated for 24–48 hours at 35°C (Chetan et al., 
2017). 
 
Identification of Bacteria Isolates 
 
The pure bacterial isolates were identified based on their morphological 
and biochemical analysis. Morphological tests like color, shape, height, 
consistency, and margin assessments as well as biochemical tests were 
conducted to confirm the results obtained from the examination of the 
pure culture isolates (Parija, 2012). 
 
Indole Test 

The indole test involved incubating isolates in peptone water at 37 °C for 
24 hours, adding Kovac’s reagent, and observing colour change. A red ring 
indicated a positive result (Chinyere et al., 2022). 
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Citrate Utilization Test 
 
The isolates were inoculated by stab technique onto a slope of Simmons’s 
citrate solid media and incubated at 37°C for 24 hours. Growth with a blue 
colour on the slant indicates a positive test and no growth or growth 
without any colour change indicates a negative test (Nwakobyet al., 2021; 
Parija, 2012). 
 
Oxidase Test 
 
A 1% solution of oxidase reagent, freshly prepared was soaked onto a 
piece of filter paper and then moistened with sterile distilled water. A 
sterile wire loop was used to pick isolates and spread them over the filter 
papers. Formation of deep purple colour change within 10 seconds (an 
indophenol blue), indicates a positive test for oxidation complement 
(Chinyere et al., 2022; Parija, 2012). 
 
Catalase Test 
 
About 5 drops of 3% hydrogen peroxide (H2O2) were emulsified with a 
24-hour-old sample colony on a sterile test slide. The slides were placed 
against a dark background and observed for immediate effervescence or 
bubbles representing a positive test because of the breakdown of H2O2 by 
the catalase enzyme to produce oxygen bubbles (Chinyere et al., 2022; 
Parija, 2012). 
 
Antibiotics Susceptibility Testing (AST) 
 
Antibiotic susceptibility testing was performed using the Kirby-Bauer disk 
diffusion method. Standardized bacterial inoculum was swabbed on 
Mueller-Hinton agar plates. Antibiotic-impregnated discs were placed on 
the surface and incubated at 37°C for 18–24 hours. The susceptibility of 
each isolate to each antibiotic was shown by a clear zone of growth 
inhibition measured millimeters and they were interpreted using a standard 
chart, EUCAST 2023 (European Committee on Antimicrobial 
Susceptibility Testing). 
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Molecular Characterization of Bacteria Isolates 
 
Bacterial DNA Extraction 
 
Bacterial cells were pelleted by centrifuging 5 mL of culture at 10,000 x g 
for 12 minutes and re-suspended in 500 µL of guanidine hydrochloride. 
Proteinase K was added for protein digestion and equal volume ethanol 
was added to the lysate, and the solution was transferred to a spin column. 
Centrifugation at 10,000 x g allowed DNA to bind to the column. Purified 
DNA was eluted by adding 70 µL of TE buffer and centrifuging. 
 
PCR Amplification 
 
Universal bacterial primers 27F and 1492R, which target the 16S rRNA 
gene, were prepared in a cocktail 27F (5’- GAGTTTGATCMTGGCTC
AG-3’) and 1492R (5’TACGGYTACCTTGTTACGACTT-3’). The 
total reaction volume was 25 µL, including template DNA, primers, and 
PCR Master Mix. The thermal cycling conditions were set as follows: 
Initial denaturation at 94°C for 5 minutes, 35 cycles of denaturation at 
94°C for 30 seconds, annealing at 56°C for 30 seconds, and extension at 
72°C for 45 seconds and Final extension at 72°C for 7 minutes, followed 
by an indefinite hold at 4°C (Green & Sambrook, 2012). 
 
Agarose Gel Electrophoresis 
 
A 2% agarose gel was prepared by dissolving agarose in TAE buffer and 
adding ethidium bromide for DNA visualization. PCR products were 
loaded into the gel and electrophoresed at 100V for 35 minutes. A 100-bp 
DNA ladder was used as a marker. DNA bands were visualized under UV 
light using an Accuris UV Transilluminator (Green & Sambrook, 2012). 
 
Sequencing 
 
PCR products were cleaned enzymatically using EXOSAP and sequenced 
using the Brilliant Dye™ Terminator Cycle Sequencing Kit V3.1. The 
sequences were analyzed using a BLAST search to identify the bacterial 
species (Green & Sambrook, 2012). 
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Results 

 
Identified Bacteria Isolates from Specimens Cultures 
 
A total of 42 strains of bacteria isolates were obtained from the fermented 
cassava tubers and identified as Alcaligenes faecalis (14) 33.3%, Pseudomonas 
aeruginosa (13) 30.95% and Pseudomonas putida (15) 35.71% as shown on 
tables 1. 
 
TABLE 1: Morphological and Biochemical Features of Bacteria 
Isolates from sample 
 

MEDIUM 
COLONY 
FEATURES 

IND CIT CAT 
NUMBER 

OF 
ISOLATES 

Macconkey 
agar 

Red, Solitary, Sticky, 
Convex, Non-
hemolytic, Slimy 

+ + - 
 

14 

Mannitol 
salt agar 
 

Yellow, entire, 
smooth, shiny, solitary, 
convex 

+ - + 13 
 

Cetrimide 
agar 

Green, Shiny, Mucoid, 
Convex 

– + + 

 
15 

 
Key: 

IND = Indole test 
CIT = Citrate test  
CAT = Catalase test 
CT= Cassava Tubers 
+ = Positive 
–=Negative 
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Figure 1: Agarose gel electrophoresis showing PCR amplification of the 16S rRNA gene 
(~1500 bp) from bacterial isolates obtained from cassava tuber samples. Lane L: DNA ladder 
(molecular weight marker); Lane ES: amplified product from sample ES; Lane EP: amplified 
product from sample EP; Lane EX: amplified product from sample EX. All samples showed 
distinct bands at approximately 1500 bp, indicating successful amplification of the 16S rRNA 
gene region. 
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Table 2: Antibiotics susceptibility test results of Pseudomonas 
aeruginosa with the Inhibition Zone Diameter measured 
in mm  

 

Isolates AZN AUG CXM CIP CRO GN LBC IMP ZEM OFX 

Pseudomonas 
aeruginosa 

0 0 0 19 0 12 0 0 0 0 

Pseudomonas 
aeruginosa  09 0 0 0 0 0 15 0 0 0 

Pseudomonas 
aeruginosa  0 0 18 0 0 14 25 0 0 0 

Pseudomonas 
aeruginosa  0 0 0 0 0 0 0 0 0 19 

Pseudomonas 
aeruginosa  0 0 0 0 0 0 15 15 0 0 

Pseudomonas 
aeruginosa  12 0 0 19 0 17 16 0 0 0 

Pseudomonas 
aeruginosa  19 0 15 21 0 13 27 20 0 20 

Pseudomonas 
aeruginosa  19 0 0 12 0 12 10 0 0 0 

Pseudomonas 
aeruginosa  0 0 0 0 0 0 17 0 0 09 

Pseudomonas 
aeruginosa  0 0 0 17 0 0 15 0 0 0 

Pseudomonas 
aeruginosa  21 0 15 0 0 14 15 0 0 0 

Pseudomonas 
aeruginosa  15 0 0 0 0 0 20 0 0 0 

Pseudomonas 
aeruginosa  0 0 0 0 0 16 16 0 0 0 

 
Keys →AZN– Azithromycin (15 μg), AUG– Amoxicillin-clavulanic acid (30 μg), 
CXM– Cefuroxime (30 μg), CIP– Ciprofloxacin (5 μg), CRO– Ceftriaxone (30 μg), GN– 
Gentamycin (10 μg), LBC– Levofloxacin (5 μg), IMP– Imipenem (10 μg), ZEM– Cefixime 
(5 μ), OFX–Ofloxacin (5 μg) 
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Isolated 
bacteria 

AUG CRO ACX IMP GN CXM NF LBC ZEM OFX 

Alcaligenes 
faecalis 

0 0 0 0 0 0 0 23 0 15 

Alcaligenes 
faecalis 0 0 0 0 17 0 0 16 0 0 

Alcaligenes 
faecalis 0 0 0 0 0 0 0 0 0 22 

Alcaligenes 
faecalis 0 0 0 0 10 0 0 21 0 10 

Alcaligenes 
faecalis 0 0 0 0 21 0 0 29 0 0 

Alcaligenes 
faecalis 0 0 0 0 15 0 0 18 10 0 

Alcaligenes 
faecalis 0 0 0 0 0 0 0 25 10 15 

Alcaligenes 
faecalis 0 0 0 0 0 0 0 22 15 0 

Alcaligenes 
faecalis 0 0 0 0 12 0 0 15 0 0 

Alcaligenes 
faecalis 0 0 0 0 14 0 0 17 0 0 

Alcaligenes 
faecalis 0 0 0 0 0 0 0 26 0 15 

Alcaligenes 
faecalis 0 0 0 0 0 0 0 22 0 0 

Alcaligenes 
faecalis 0 0 0 0 0 0 0 21 0 10 

Alcaligenes 
faecalis 0 0 0 0 15 0 0 18 0 12 

Pseudomonas 
putida 

0 0 0 0 0 0 0 10 0 18 

Pseudomonas 
putida  0 0 0 0 0 0 0 20 0 12 

Pseudomonas 
putida  0 0 0 0 0 0 0 10 0 17 

Pseudomonas 
putida  0 0 0 0 14 0 0 22 0 16 

Pseudomonas 
putida  0 0 0 0 0 0 0 20 0 0 

Pseudomonas 
putida  0 0 0 0 0 0 0 10 0 0 

Pseudomonas 
putida  0 0 0 0 0 0 0 0 0 0 
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Table 3: Antibiotics susceptibility test results of Alcaligenes faecalis 

with the Inhibition Zone Diameter measured in mm 
 
Keys →AZN– Azithromycin (15 μg), AUG–Amoxicillin-clavulanic acid (30 μg), 
CXM–Cefuroxime (30 μg), CIP–Ciprofloxacin (5 μg), CRO– Ceftriaxone (30 μg), GN– 
Gentamycin (10 μg), LBC– Levofloxacin (5 μg), IMP– Imipenem (10 μg), ZEM– Cefixime 
(5 μ), OFX– Ofloxacin (5 μg) 

 
Discussion 
 
This study investigated the microbial composition of cassava farmlands in 
Anambra State, Nigeria, identifying three major bacteria: Alcaligenes faecalis, 
Pseudomonas aeruginosa, and Pseudomonas putida. The microbial isolation was 
conducted in two phases: biochemical tests (indole, catalase, oxidase, 
coagulase) and molecular studies using 16S rRNA sequencing for 
definitive identification. The isolates comprised Pseudomonas putida (36%), 
Alcaligenes faecalis (33%), and Pseudomonas aeruginosa (31%), consistent with 
previous findings in Benin and Delta State (Dike et al., 2022; Igbinosa & 
Igiehon, 2015; Adomi et al., 2020). 

A similar study by Kandasamy et al. (2015) identified Pseudomonas putida in 
cassava wastewater. Pseudomonas spp. are frequently associated with cassava 
fermentation due to their enzymatic role in cyanide reduction (Balogun et 
al., 2021; Bankole et al., 2022). Aremu et al. (2010) demonstrated that 
Pseudomonas aeruginosa utilizes cassava-derived reducing sugars for 
polyhydroxy butyrate production during fermentation. The presence of 

Pseudomonas 
putida  0 0 0 0 0 0 0 0 0 15 

Pseudomonas 
putida  0 0 0 0 0 0 0 16 0 0 

Pseudomonas 
putida  0 0 0 0 10 0 0 0 0 17 

Pseudomonas 
putida  0 0 0 0 0 0 0 19 0 10 

Pseudomonas 
putida  0 0 0 0 15 0 0 0 0 0 

Pseudomonas 
putida  0 0 0 0 11 0 0 0 0 19 

Pseudomonas 
putida  0 0 0 0 17 0 0 0 0 0 

Pseudomonas 
putida  0 0 0 0 17 0 0 0 0 0 
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Pseudomonas spp. in cassava tubers may also stem from farmland 
contamination with cassava effluents, influencing soil microbial diversity 
and pH (Igbinosa & Igiehon, 2015). Alcaligenes faecalis was also isolated, in 
agreement with Obire et al. (2021), and its occurrence in cassava and 
plantain flours was also reported by Oyeyinka & Oyeyinka (2018). 

Molecular techniques have increasingly been used to study microbial 
communities in agricultural environments. For instance, Orji et al. (2019) 
and Okonko et al. (2020) used 16S rRNA sequencing to detect Pseudomonas 
aeruginosa in food and water samples, affirming its prevalence in 
environmental matrices. Babalola et al. (2018) also identified Pseudomonas 
putida in cassava effluents and soils, reinforcing its relevance in 
bioremediation. Likewise, Singh et al. (2021) and Biswas et al. (2017) 
identified Alcaligenes faecalis in agricultural soils using molecular methods, 
emphasizing its nitrogen-cycling role and bioremediation potential. 

Antibiotic susceptibility testing followed EUCAST (2025) guidelines to 
evaluate resistance profiles of Pseudomonas aeruginosa, Pseudomonas putida, and 
Alcaligenes faecalis. Pseudomonas aeruginosa exhibited 100% resistance to 
cefixime, amoxicillin-clavulanic acid, ceftriaxone, cefuroxime, 
ciprofloxacin, ofloxacin, and azithromycin; 92.4% resistance to imipenem 
and gentamicin; and 76.9% to levofloxacin. Minor susceptibility was noted 
to levofloxacin (7.6%) and gentamicin (7.6%), with intermediate response 
to imipenem. These findings align with Urgancı et al. (2022) and Pang et al. 
(2019). 
Alcaligenes faecalis showed 100% resistance to amoxicillin-clavulanic acid, 
ceftriaxone, azithromycin, imipenem, cefuroxime, cefixime, ofloxacin, and 
ciprofloxacin; 92.8% resistance to gentamicin; and 42.8% to levofloxacin. 
Huang (2020) and Moscoso et al. (2023) similarly reported multidrug 
resistance in Alcaligenes faecalis. 

Pseudomonas putida demonstrated 100% resistance to amoxicillin-
clavulanic acid, ceftriaxone, imipenem, cefuroxime, levofloxacin, cefixime, 
ofloxacin, ciprofloxacin, and azithromycin, and 93% resistance to 
gentamicin. 

Pseudomonas aeruginosa showed notable resistance to multiple antibiotics 
including azithromycin, beta-lactams, and fluoroquinolones. However, 
some sensitivity was noted to ciprofloxacin (12–21 mm), gentamicin (12–
17 mm), and levofloxacin (10–27 mm). These findings reflect earlier 
studies which report resistance of Pseudomonas aeruginosa to beta-lactams 
and partial susceptibility to aminoglycosides and fluoroquinolones. 

Alcaligenes faecalis demonstrated relatively lower resistance, with notable 
sensitivity to levofloxacin (15–29 mm), gentamicin (10–21 mm), and 
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ofloxacin (10–22 mm). Resistance to beta-lactam antibiotics was 
consistent with its known intrinsic resistance profile. 
Pseudomonas putida was resistant to most antibiotics, yet showed moderate 
sensitivity to levofloxacin (10–22 mm), ofloxacin (10–19 mm), and 
gentamicin (10–17 mm), suggesting fluoroquinolones, particularly 
ofloxacin, may be viable for treatment. 

Antibiotic resistance was further evaluated by counting the number of 
antibiotics each organism resisted. Pseudomonas aeruginosa and Pseudomonas 
putida resisted five antibiotics and were sensitive to three, while Alcaligenes 
faecalis also resisted five but was sensitive to four, indicating slightly lower 
resistance overall. The ability to survive antibiotic-exposed environments 
suggests an adaptive advantage. Studies by Odu & Adeniji (2013) and 
Nwancho et al. (2014) similarly reported widespread antibiotic resistance in 
cassava ecosystems, emphasizing the broader implications for food safety 
and public health. 
 
Conclusion 
 
The presence of Pseudomonas aeruginosa, Pseudomonas putida, and Alcaligenes 
faecalis in cassava farmlands poses serious health and economic risks. These 
opportunistic pathogens can cause infections, particularly in vulnerable 
individuals, and exhibit high antibiotic resistance. Contaminated cassava 
may threaten food safety and reduce product shelf life, resulting in 
financial losses. Alcaligenes faecalis, though useful in waste treatment, is 
emerging as a public health concern. These findings highlight the need for 
improved agricultural practices, regular microbial monitoring, and further 
research on resistance mechanisms to ensure the safety and quality of 
cassava products in Nigeria. 
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Appendix 
 
16S rRNA GENE SEQUENCING RESULTS  
 
Sample EK  
Organism: Alcaligenes faecalis strain LCU-MCB-22-001  
GenBank Accession Number: OP114642.1  
Sequence Identity: 100%  
Partial 16S rRNA Sequence:  
AAGTCGAACGGCAGCGCGAGAGAGCTTGCTCTCTTGGCGGC
GAGTGGCGCACGGGTGAGTAATATATCGGAACGTGCCCGAT
AGCGGGGGATAACTACTCGAAACAGTGGCTAATACCGCATA
CGCCCTACGGGGGAAAGGGGGGGATCGCAAGACCTCTCACT
ATTGGAGCGGCCGATATCGGATTAGCTAGTTGGTGGGGTAA
AGGCTCACCAAGGCTACGATCCGTAGCTGGTTTGAGAGGAC
GACCAGCCACACTGGGACTGAGACACGGCCCAAACTCCTAC
GGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGAAACC
CTGATCCAGCCATCCCGCGTGTATGATGAAGGCCTTCGGGTT
GTAAAGTACTTTTGGCAAAGAATAAAAGGTATCCCCTAATAC
GGGATACTGCTGACGGTATCTGCAGAATAAGCACCGGCTAA
CTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGT
TAATCGGAATTACTGGGCGTAAAGCGTGTGTAGGCGGTTCG
GAAAGACAGATGTGAAATCCCAGGGCTCAACCTTGGAACTG
CATTTTTAACTGCCGAGCTAGAGTATGTCAGAGGGGGGTAG
AATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAGGA
ATACCGATGGCGAAGGCAGCCCCCTGGGATAATACTGACGC
TCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGATACCC
TGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGG
CCGTTAGGCCTTAGTAGCGCAGCTAACGCGTGAAGTTGACC
GCCTGGGCAGTACGGTCGCAAGATTAAAACTCAAAGGAATT
GACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTC
GATGCAACGCGAAAAACCTTACCTACCCTTGACATGTCTGGA
AAGCCGAAGAGATTTGGCCGTGCTCGCAAGAGAACCGGAAC
ACAG  
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Sample ES  
Organism: Pseudomonas aeruginosa strain PsADMC09  
GenBank Accession Number: MK598336.1  
Sequence Identity: 87.93%  
Partial 16S rRNA Sequence:  
TTATAGATTTTTGTCCTCTGATATGAGCGGCGGGTATGCCTA
CTAAATGCAAATCGAGGGGCGGAGAGAGAGTACTCTCCTGT
TGTCAGCGGCGGCGGGGTGAGTTATTTATTGGGATCTGCCT
GATAGGGGGGAAAAACGTCCGGAAACGGGCGCTAATACCG
CATAAGTCCTGTGGGGGGAAGGGGGGGGTTTTCGGACCTT
TCGCTATCAGATGAGCCCATGTGCGATTAGTTAGTTGGTGG
GGTAAAGGCTTACCTAGGCGACGATCCGTAACTGGTTTGAG
AGGATGATCAGCCACCCTGGAACTGAGACACGGTCCCGACT
CCTACGGGAGGCA 
GCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCA
GCCATCCCGCGTGTGTGAAGAAGGCCTTTGGGTTGTAAAGT
ACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCGTGGT
CTTTTGACGTTTCCAACAAAAAAAGCACCGGCTAATTTCTTGC
CACCAGCCCCGGTAATACTAAGGGGGCAAGGGTTTATTGGA
ATTTTTGGGGGTAAAAAGGGGGTAGGGGGTTTATCAATTTG
GATGTGAAAACCTCGGGCCTAACCTGGGAAATGCATCCAAA
ACTGGTGAGCTAGAGTCAGGTAGAGGGAGGTAGAATTTCAT
GTGTAGCGGTGAAATGGGTAAAATTTGGGAGGAAAACCGG
TGGGGAAGGCGGCCTCCTGGACATATCTTGCCCTTAGGTCA
GCAAGCGTGGGGGGCGAACCGGATTAGATACCCTCCGTGTT
CCAACCCCCAACGGATGTTGAATATGGCGTTGGGGGTCCTT
GAGGTTTTGGTTGCGCGAGTTAACGCGTAATTCTCCCGCCTG
GGGAGTACGGCCGCAAGGTTAAAACTCAATGAATTGACGGG
GGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCAAAGCA
ACGCGAAGAACCTTACCTGGTCTTGACATGCTGAGAACTTTC
CAAAGATGGATTGGTGCCTTCGGGAACTCTGACACATGGCT
GATGGCTGTCGTAGCTCGGGTTGTGAATGGTGGGTTAAGTC
CCGAACGAAGCCAAACCTTATCCTTTGTTGCAGCATTAAGGG
CCGAATTCTAAGGAGACTGCCCGAGACAAACGGAAGGAAGG
GGGATGACGTAAAGTCATCATGGTCCTTACGGCCAGGGCTA
CCACCTGCTACCATGGACGAAACAAAAGGGTGCCACCCCGC
GAGGGGGAGCTAATCCCATAAAACCGATCGTAGTTCGGATC
GGGTCTGCAACTCGACTTCCTGAAACCGGATTCGCTAGTAAT
CGTGAATCAAAATGGTACGGTGAATACCTTCCCGGGCCTTGT
ACAAACCGCCCGTCACCCCATGGGAGTGGGTTGCTACAAAA
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GCACTAATTTAACCGTCACGAGGACGGCTCCCACGATGTGAT
TCTTGACTGCGGTGACCCAAACAAGGCC 
 
Sample EP  
Organism: Pseudomonas putida strain SB19  
GenBank Accession Number: MZ430405.1  
Sequence Identity: 84.82%  
Partial 16S rRNA Sequence:  
GCGTTAGCTGCGGACTGAGGGAGACCCACCGGCTATCGACA
TCGTTTACCGGGGACTACCAGGGAACTAATCCTGGTTGGTCC
CCACGCTTTCCCACCTCAGTGCAGTATGTCCAGGGGGCCCTT
CCCACGGGTTCCTTCCTATTTTACCATTTCCCGTACCCAGAAA
TTCCACCCCCTTCCATACTTAGCTTCGGTTTTGGATGTTCCCG
GTGAGCCCGGGGTTTCACATCAACTTAACAACCCCTACCGCG
CTTTACCCCAAATTCCATAACGCTTGCCCCTGTATTACCGGGT
GTGGCACAGATTAGCCGGTGCTTATTCTGTGGAAACGCAAA
AAAGGATTAACTTACTGCCCTTCCTCCCAACTAAAGTGCTTTA
CAACCAAGACCTTCTTCAACACGCGGGATGGTGATCAGGCTT
CGCCCATTGTCAAATTCCCCACTGTGCCTCCCGTAGGAGCTG
GACCGTGTCTCAGTCCAGGTGACTGATCATCCTCTCAACAGT
ACGGATCGTCGCTAGGTAGCATTACCTCACCTACTACTAATC
GACCTGGCTCATCTGATAGCGCAAGGCCGAAGGTCCCCTGC
TTTCTCCCGAGGACATGCGGTATTAGCGCCTTTCAGAGTTCC
CCCACTACAGGCAGATCCTATGATTACTCACCCGTCCGCCGC
TACAAGGAAATCCCGTCTCCGTCCTGCAGTGTAGCCTGACCA
CCACGTCAATTCTGAACAGATCAACTCTACAACGT 
 


