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Abstract The maximum absolute internally studentized
residual is a regular diagnostic measure for identification
of a single outlying observation in the response variable in
linear regression models. However, due to the daunting and
formidable nature of the probability density function of this
statistic, exact critical values are tough to compute. The
Bonferroni inequality and intensive simulations are the only
tools for determining its critical values as a means for detecting
a single outlying observation in a linear regression model. In
this paper, we present a straightforward alternative technique
for obtaining asymptotic critical values of this statistic. The
technique can be applied to any linear regression model and
is convenient for routine use. The asymptotic distribution of
this statistic is derived and used in obtaining the upper bounds
for its critical values. It is shown that the proposed technique
does not depend on the number of independent variables or
the number of regression parameters in the model. Thus, the
computational cumbersomeness and tedium imposed by the
complexity associated with the distribution of this statistic and
the use of the Bonferroni inequality are circumvented. The

main advantages of the proposed procedure are its compu-
tational simplicity and efficiency to handle large datasets in
high dimension. The asymptotic critical values of this statistic
obtained by the proposed method are almost identical to those
obtained by other authors, even though the techniques and
principles employed in this work are entirely different from
that employed by them.

Keywords Critical Values, Bonferroni Inequality, Test
Statistic, Studentized Residual, Hat Matrix, Leverage

1 Introduction

The use of regression techniques to analyze large datasets
from medical, physical and social sciences as well as from
other areas of science and technology is not uncommon. It
is also not uncommon for a large dataset to contain an outly-
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ing observation. An outlying observation may be as a result
of human errors such as during transcription of the data or the
result of gross deviation from prescribed experimental proce-
dures. The presence of an outlying observation in a dataset
can obviously impair estimation efficiency and the meaningful-
ness of standard tests of hypotheses. Of immense concern to
researchers is the detection of outlying observations in linear
regression, because of the common application of regression
models in many areas. It is therefore necessary that outlying
observations be detected and scrutinized by data analysts.

The study of outlying observations in linear models is a very
exciting statistical problem. Excellent book-length treatments
of outliers include [1, 2, 3, 4, 5, 6, 7]. A good number of pa-
pers have been published and devoted exclusively to this sub-
ject such as [8, 9, 10, 11].

Consider the linear regression model

Y = Xβ + ε, (1)

where Y = (y1, y2, ..., yn)
′ is an n× 1 vector of values of the

response variable, X = (X ′
1, X

′
2, ..., X

′
n)

′ is an n × p matrix
of explanatory variables, β = (β1, β2, ..., βp)

′ is a p× 1 vector
of unknown parameters, ε = (ε1, ε2, ..., εn)

′ is an n × 1 vec-
tor of independent normal random variables with mean 0 and
(unknown) variance σ2. For β̂ = (X′X)−1X′Y being the or-
dinary least squares estimator of β, the vector of the ordinary
least squares residuals e can be written as

e =Y −Xβ̂ = (I −H)Y,

where H = (hij) = X(X′X)−1X′ is called the hat matrix or
the leverage matrix. ei = yi − ŷi is called the ith residual,
where ŷi is the predicted value of yi. The residual mean square
estimator of σ2 is then

σ̂2 =
e′e

n− p
.

The ordinary least squares residuals ei are important diag-
nostic tools in linear regression. They are employed as a basis
for identifying outlying observations in the response variable
in linear regression models. However, these residuals have
several deficiencies which dwarf their usefulness as a means
for detecting a single outlying observation in a linear regres-
sion model. Their variances are unequal and they are corre-
lated. Standardized residuals ri are preferable for diagnostic
purposes. The ith standardized residual has a representation of
the form

ri =
ei

σ̂
√
1− hii

. (2)

The ith standardized residual above is sometimes called an in-
ternally studentized residual. ri is an important component
of most diagnostic measures in linear regression diagnostics.
Standardized residuals ri are more tractable and are preferable
to ordinary residuals ei for detecting outliers in the response
variable in linear regression models. However, the probability
density function of ri is complex.

Define
ξi =

ri√
n− p

. (3)

Ellenberg [12] derived the joint probability distribution of ξi
and showed that the probability density function for any ξi is
given by

f(ξi) =C
(
1− ξ2i

) (n−p−3)
2 , ξ2i ≤ 1 (4)

where

C =
Γ
(
n−p
2

)
Γ
(
1
2

)
Γ
(
n−p−1

2

) .
The test statistic

Rn =max |ri| . (5)

is called the maximum absolute internally studentized residual
statistic. Many classical linear regression diagnostics are built
around Rn. The standardized residuals ri can be used to detect
an outlying observation using the probability density function
of Rn. When Rn is noticeably large, we declare the component
of Y having that value to be outlying. The distribution of Rn is
complex and intractable. Its exact critical values are very hard
to compute and available ones are obtained using the first-order
Bonferroni upper bound or intensive simulations (see Cook and
Prescott [13]).

2 Critical Values of Rn

Many authors have employed different procedures to obtain
critical values of Rn. Tietjen et al.[14], following the sugges-
tion of Behnken and Draper [15], used Rn for a single outlier
detection in simple linear regression models. Tietjen et al.[14]
determined critical values of max |ri| using an intensive simu-
lation study involving thousands of sampling experiments for
a simple linear regression.

Following Ellenberg’s [12] suggestion, Prescott [16] ob-
tained a table of upper bounds for the critical values of Rn.
Prescott’s [16] table entries were calculated from the expres-
sion

U =
√

(n−p)F
(n−p−1+F , (6)

where F is the 100(1− α
n ) percentage point of the F distribu-

tion with 1 and (n − p − 1) degrees of freedom. For a simple
linear regression model ( p=2), Prescott’s results were found to
be almost identical to those of Tietjen et al.[14].

Let r0 denote an upper bound value of Rn. Lund [17] made
use of the Bonferroni inequality to obtain r0 from the expres-
sion

1∫
ξ0

2n f(ξi) dξi = α, (7)

where ξ0 is a value of ξi (see equation(3)) and r0 = ξ0
√
n− p.

Ugah et al. [18] set

Yi = |ri| (8)
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and derived the distribution of Yi = |ri| in terms of yi as

f|ri|(yi) = H
(
1− y2i

(n− p)

)(n−p−3
2 )

, 0 < yi <
√
n− p

(9)

where

H =
2Γ

(
n−p
2

)
Γ
(
1
2

)√
n-pΓ

(
n−p−1

2 .
) .

Then using the Bonferroni inequality, they obtained r0 by solv-
ing

√
n−p∫

r0

n f|ri|(yi) dyi = α. (10)

Lund [17] combined the concept of Bonferroni inequality
and rigorous numerical integration to compute approximate
critical values of Rn. The method used by Prescott [16] to ob-
tain r0 demands that the values of the F-distribution be known.
The paucity of percentage points for the F-distribution makes
Prescott’s method difficult to implement. The method used by
Tietjen et al.[14] to obtain r0 requires an extensive Monte Carlo
study. Ugah et al. [18] obtained the distribution of |ri| and used
the concept of Bonferroni inequality and rigorous integration to
obtain r0. The values of r0 obtained by [16, 17, 18] are identi-
cal. The different techniques employed by these authors to ob-
tain r0 are computationally very demanding, because they have
daunting computational requirements, and may not be feasible
to apply in large datasets in high dimension. Therefore, a sim-
ple and computationally efficient method for computing upper
bounds of the critical value of Rn to handle outlying problems
in large datasets in high dimention is needed.

Our objective is to propose a new easy-to-use procedure for
obtaining r0, especially for large datasets in high dimension. In
this paper we propose an efficient procedure for obtaining r0 to
combat outlying problems in the response variable in linear re-
gression in large datasets. The method we propose does not
depend on the number of independent variables or parameters
in the model. It does not involve numerical integration or sim-
ulation. The new approach is also devoid of mathematical rigor
associated with the use of the Bonferroni inequality. It is very
easy to apply and is in a very convenient form for immediate
use by any researcher. The asymptotic critical values obtained
by the proposed approach are shown to exhibit no substantial
difference with the ones obtained by Houston [19], especially
for large n ( n ≥ 500). The simplicity of the proposed method
makes it very efficient and effective in large datasets in high
dimension, and hence a very useful tool in applied regression
diagnostics.

3 Materials and Methods
In developing the new approach, use is made of asymptotic

properties of internally studentized residuals ri. For most prac-
tical problems, especially for large samples, the internally stu-
dentized residuals ri have approximately a standard normal

(Gaussian) distribution (see [2, 4, 20]. Let

Zi = |ri| . (11)

It can be shown that the distribution of Zi = |ri| follows a
standard half-normal distribution. If X follows a normal distri-
bution with mean 0 and variance 1, X ∼ N(0, 1), then |X| fol-
lows a (standard) half-normal distribution (see [21, 22]. Since
for large n the internally studentized residuals ri have approx-
imately a standard normal distribution, ri ∼ N(0, 1) approx-
imately, consequently, the distribution of Zi = |ri| follows a
standard half-normal distribution for large n. The large sample
probability density function of Zi = |ri| in terms of zi is

fZi
(zi) =

√
2

π
e−

z2i
2 , 0 < z < ∞ (12)

while the cumulative density function (CDF) is given by

FZi(zi) =Erf
(

zi√
2

)
, 0 < z < ∞ (13)

and Erfc[z] gives the complementary error function erfc(z).
Equations (12) and (13) are feature-friendly and do not depend
on n and p. Using equations (12) and (13) and the general
knowledge of maximum in distribution theory, it can be shown
that the probability density function of Rn is given by

fRn
(ri) = n [FZi

(ri)]
n−1

fZi
(ri), 0 < r < ∞, (14)

3.1 Asymptotic Critical Values of Rn

Houston [19] extended Table 1 in Lund [17] using the same
propbability density function (used by Lund [17]) and a differ-
ent integration procedure. In this paper, we present a straight-
forward method for obtaining large-sample critical values of
Rn and extend the table from 1000 to 1500 data points.

Let r∗0 denote an asymptotic critical value of Rn obtained
by using the new approach. To obtain r∗0 , it is necessary to
evaluate

∞∫
r∗0

n [FZi
(ri)]

n−1
fZi

(ri) dr = α. (15)

Equation (15) allows closed form integration and by that
means, it can be shown that

∞∫
r∗0

n [FZi
(ri)]

n−1
fZi

(ri) dri = 1− Erf
(

r∗0√
2

)n

. (16)

Equating (16) to α and solving for r∗0 gives

r∗0 =
√
2Erf−1

{
(1− α)1/n

}
. (17)

Equation (17) is amenable to evaluation and allows convenient
computation of r∗0 . It depends on n and α. Thus, only n and α
are needed to obtain r∗0 .

Houston [19] remarked that the approximate critical values
of equation (5) become less dependent on the number of inde-
pendent variables and/or regression parameters in the regres-
sion model as n increases, especially for n > 100. This obser-
vation is reflected in equation (17). The approximate critical
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values of Rn for significance levels α = 0.1, 0.05, 0.01 and
n = 500 to 1000 are presented in Table 1, while values of r∗0
for significance levels α=0.1, 0.05, 0.01 and n = 1000 to 1500
are presented in Table 2. The computations were implemented
by using Mathematica software version 12.1.

Table 1.
Values of r∗0 for detecting a single outlier

in linear regression (500 ≤ n ≤ 1000).

n 0.1 0.05 0.01
500 3.7058 3.8844 4.2638
520 3.7158 3.8939 4.2725
540 3.7253 3.9031 4.2809
560 3.7345 3.9119 4.2890
580 3.7433 3.9203 4.2968
600 3.7518 3.9285 4.3043
620 3.7600 3.9364 4.3116
640 3.7679 3.9440 4.3186
660 3.7756 3.9513 4.3254
680 3.7830 3.9585 4.3319
700 3.7902 3.9654 4.3383
720 3.7972 3.9721 4.3445
740 3.8040 3.9786 4.3505
760 3.8106 3.9850 4.3564
780 3.8170 3.9911 4.3621
800 3.8233 3.9971 4.3676
820 3.8294 4.0030 4.3730
840 3.8353 4.0087 4.3782
860 3.8411 4.0142 4.3834
880 3.8467 4.0196 4.3884
900 3.8522 4.0249 4.3933
920 3.8576 4.0301 4.3980
940 3.8628 4.0352 4.4027
960 3.8680 4.0401 4.4073
980 3.8730 4.0449 4.4117

1000 3.8779 4.0497 4.4161

Table 2.
Values of r∗0 for detecting a single outlier

in linear regression (1000 ≤ n ≤ 1500).

n 0.1 0.05 0.01
1000 3.8779 4.0497 4.4161
1020 3.8827 4.0543 4.4204
1040 3.8875 4.0588 4.4246
1060 3.8921 4.0633 4.4287
1080 3.8966 4.0676 4.4327
1100 3.9011 4.0719 4.4367
1120 3.9054 4.0761 4.4405
1140 3.9097 4.0802 4.4443
1160 3.9139 4.0843 4.4481
1180 3.9180 4.0882 4.4518
1200 3.9221 4.0921 4.4554
1220 3.9260 4.0960 4.4589
1240 3.9300 4.0997 4.4624
1260 3.9338 4.1034 4.4658
1280 3.9376 4.1071 4.4692
1300 3.9413 4.1106 4.4725
1320 3.9450 4.1142 4.4758
1340 3.9486 4.1176 4.4790
1360 3.9521 4.1211 4.4821
1380 3.9556 4.1244 4.4853
1400 3.9590 4.1277 4.4883
1420 3.9624 4.1310 4.4913
1440 3.9658 4.1342 4.4943
1460 3.9690 4.1374 4.4973
1480 3.9723 4.1405 4.5001
1500 3.9755 4.1436 4.5030

4 Discussion
The approach considered herein is based on the asymp-

totic properties of the maximum absolute internally studentized
residual. A table of asymptotic critical values of Rn is ex-
tended from 1000 to 1500 for α = 0.1, 0.01 and 0.05 using a
simple procedure. The new method is shown to be independent
of the number of regression parameters or independent vari-
ables in the model. Our results are almost identical to those of
Houston [19] (for n = 500), even though the techniques and
principles employed in this work and that invoked by Houston
[19] are entirely different. Ease of computation is one of the
main merits of the new approach over computationally inten-
sive methods. This is a great advantage and is particularly ap-
preciated when large datasets in high dimension are involved.
In particular, it can be very computationally efficient in large
datasets in high dimension, where more sophisticated methods
are hard to apply because of their high computational demands
(or requirements). The new result in this work also provides
a platform and an approach for describing asymptotic distribu-
tions and properties of other diagnostics that consist of the in-
ternally studentized residuals. Above all, tables of r∗0 generated
using the new approach are very simple and lack the bulkiness
and awkwardness associated with tables of upper bounds of Rn

(see Tables 1-2 in [19]). These tables of r∗0 can be used for any
linear regression diagnostics involving Rn irrespective of the
number of parameters or independent variables in the model.
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