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Abstract It is not uncommon to find an outlier in the
response variable in linear regression. Such a deviant value
needs to be detected and scrutinized to find out why it is not
in agreement with its fitted value. Srikantan [1] has developed
a test statistic for detecting the presence of an outlier in
the response variable in a multiple linear regression model.
Approximate critical values of this test statistic are available
and are obtained based on the first-order Bonferroni upper
bound. The exact critical values are not available and a result
of that, tests carried out on the basis of this approximate
critical values may not be very accurate. In this paper, we
obtained more accurate and precise critical values of this test
statistic for large sample sizes (herein called asymptotic criti-
cal values) to improve on the tests that use these critical values.
The procedure involved using the exact probability density
function of this test statistic to obtain its asymptotic critical
values. We then compared these asymptotic critical values
with the approximate critical values obtained. An application
to simulation results for linear regression models was used to
examine the power of this test statistic. The asymptotic critical
values obtained were found to be more accurate and precise.
Also, the test performed better under these asymptotic values (
the power performance of this test statistic was found to better
when the asymptotic critical values were used).

Keywords Asymptotic, Bonferroni upper Bound, Critical

Values, Internally Studentized Residuals, Outlier, Regression,
Residual, Test Statistic

1 Introduction
If a value of the response variable deviates considerably

from its fitted value than others values deviate from their fitted
values, we call such a value an outlier. One of the most popular
definitions of an outlier has been given by [2]). He described
an outlier as an observation which deviates so much from other
observations as it were generated by a different mechanism.
Stefansky [3] defined an outlier as one that does not fit in with
the pattern in the dataset. According to [4], an outlying value is
a value that deviates markedly from other values in the dataset.
Johnson et al. [5] defined an outlier as an observation which is
inconsistent with the remainder of observation in dataset from
which it occurs. An outlying data is caused by such factors
as human errors, the erroneous operation of computer systems,
sampling errors or standardization failures (see [6]). Accord-
ing to Domańsk [6], numerous statistical methods for outlier
detection have been proposed. He recommended that circum-
spection (cautiouness), double checking, recalculation, etc may
help.

Outliers may have adverse effects on data analysis. They
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may increase variance and reduce the power of statistical tests
during data analysis. Rousseeuw et al. [7] point out that they
can greatly bias regression analysis. Outliers have a potentially
large influence on the results of the statistical inference con-
cerning the models. According to him, the presence of outliers
in a dataset can cause inflated error rates and considerable dis-
tortions of parameter estimates. Rajarathinam et al. [8] empha-
sized the importance of identifying outliers in a dataset if they
exist so that appropriate measures might be taken.

A good number of test statistics for a single outlier detec-
tion in a least squares analysis based on a linear regression
model have been developed. However, exact critical values of
these test statistics are not available. They are difficult to ob-
tain owing to the complexity of the associated distributions.
Approximate critical values of these test statistics are avail-
able and are obtained by using the first-order Bonferroni upper
bound or large scale simulations. Little or nothing is known
about asymptotic critical values of these test statistics. There
is a clear need to study asymptotic critical values of these test
statistics via their exact distribution. In this work, we imple-
ment a suggestion made by [9] to obtain asymptotic critical
values of the test statistic found by [1].

The usual form of a multiple linear regression model is

Y = Xβ + ε (1)

where Y is the n×1 vector of observations,X an n×p matrix
of constants, β is a p × 1 vector of unknown parameters to be
estimated and ε an n× 1 vector of normally distributed errors.
Assuming that E(ε) = 0 and V ar(ε) = σ2I , the least squares
estimator of β in (1) is given by

β̂ = (X′X)−1X′Y

and vector of residuals is

e =Y −Xβ̂

=(I −X(X′X)−1X′)ε

The variance-covariance matrix of e is

Var(e) = (I −X(X′X)−1X′)σ2

If σ2 is estimated using σ̂2 =
e′e

n− p
, then estimated the

variance-covariance matrix e becomes

V̂ ar(e) =
(
I −X (X′X)

−1
X′
)
σ̂2. (2)

and the estimate variance of the ith residual ei is

V̂ ar(ei) = s2i = (1− hii)σ̂2 (3)

where hii is the ith diagonal element of matrix
X (X′X)

−1
X′, called the hat matrix (see [10])) and

s2i = (1 − hii)σ̂2 is the ith diagonal element of V̂ ar(e). The
ordinary residuals are not all that appropriate for diagnostic
purposes and a transformed (standardized) version of them
is preferable. This is because, from (2) the variances of the

residuals are not constant, but a function of X matrix which
would suggest a standardization of the ith residual ei. The
standardization of ei has a representation of the form

ri =
ei√

{[ e′e

(n− p)
][I −Xi (X′X)

−1
X′i]}

=
ei

σ̂
√

1− hii
=

yi − ŷi
σ̂
√

1− hii
(4)

where Xi the ith row of X and ŷi is the predicted value of yi.
The ith standardized residual Ri is often called a studentized
residual. The studentized residuals are basic building block for
most of the case test statistics studied in the literature for outlier
detection in linear models.

A good number of test statistics for a single outlier detection
depends on the studentized residuals. Excellent journal-length
treatments include [11], [12],[13], and [11]. Tietjen et al. [11]
, following the suggestion of [14], proposed a test procedure
for finding the presence of a single outlier in linear regres-
sion. They used a simulation study to determine the critical
values of the test statistic. Prescott [12] showed that the critical
values obtained by [11] are extremely close to those obtained
using the first-order Bonferroni upper bound. Following [12]
suggestion, [13] obtained elaborate tables of approximate for
detecting a single outlier in linear regression critical values.
According to [4], [13] has provided the most useful and com-
prehensive tabulation to date.

Define
ξi =

ri√
n− p

(5)

Ellenberg [15] derived the join distribution of ξ′is and showed
that it is a multivariate Inverted Students Function. and showed
that the marginal probability density law for any ξi is a univari-
ate Inverted-Students Function with probability density func-
tion given by

f(ξi) =C
(
1− ξ2i

) (n−p−3)
2 , ξ2i ≤ 1 (6)

where

C =
Γ
(
n−p
2

)
Γ
(
1
2

)
Γ
(
n−p−1

2

)
The test statistic

rn = max
∣∣∣∣eisi
∣∣∣∣ = max |ri| (7)

is called the maximum absolute internally studentized residu-
als. To obtain an upper bound r0 of the critical value of rn, [13]
made use of the Bonferroni inequality and obtained ξ0 from the
equation
.

1∫
ξ0

2n f(ξi) dξi = α (8)
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where ξ0 =
r0√
n− p

and then obtained the upper bound r0 of

the critical value of the test statistic rn using the relationship
between r0 and ξ0 given by the equation

r0 = ξ0
√
n− p (9)

for sample sizes up to n = 100, regression parameters p = 25
and α = 0.10, 0.05 and 0.01. With that [13] is claimed to
have produced the most comprehensive tabulation of the upper
bound values r0 of the critical values of rn.

Let

ti =
r2i

n− p

=
e2i∑

e2i (‘1− hii)
(10)

It is well known from the general theory of least squares that ti
follows the beta distribution with Parameters ( 12 ,

n−p−1
2 ) (see

[15] and [16]. Let f(t) denote the common distribution and
F (t) the cumulative distribution function of t′is. The cumula-
tive distribution function F (t) is the incomplete beta function
with a representation of the form

F (t) = It

(
1

2
,
n− p− 1

2

)
=

∫ x

0

t−
1
2 (1− t)

n−p−1
2 −1

Beta
(
1
2 ,

n−p−1
2

)
(11)

with 0 < t < 1. It is verifiablet that

d
dtF (t) = f(t) (12)

Srikantan [1] considered the test statistic

tn = max(t1, t2, t3, ..., tn) (13)

[1] applied the first-order Bonferroni inequality and obtained
upper bound t0 of the critical value of tn by evaluating the
equation :

n

[
1− It

(
1

2
,
n− p− 1

2

)]
=α (14)

Srikantan [1] presented tables of upper bounds t0 of the crit-
ical values of tn in Tables 1 to 3 for sample sizes up to n = 20
and regression variables p = 1, 2 and 3. They were computed
by solving equations (14) for α = 0.05 and 0.01. In the section
that follows, we consider obtaining asymptotic critical values
of tn.

2 Materials and Methods
Srikanta [1] proposed the test statistic tn for detecting a sin-

gle outlier in linear regression and determined approximate
critical of tn via the use of the first-order Bonferroni upper
bound. In this paper, we consider obtaining asymptotic criti-
cal value x0 of tn by implementing a suggestion made by [9].
Chatterjee et al. [9] suggested that for most practical problems,
especially when the sample size is large, that the lack of in-
dependence may be ignored. We implement this suggestion to

obtain asymptotic critical value x0 of tn for large n=200. Then,
we compare these asymptotic critical values x0 with the upper
bounds t0 obtained by [1]. We also obtained the asymptotic
critical value x0 of tn for small sample sizes up to n=20.

Since the determination critical values for a conventional
statistical test requires the knowledge of the distribution of the
test statistic when the null hypothesis is assumed to be true, we
need the distribution tn. Our approach to obtaining the distri-
bution of tn will be anchored on the theory on the distribution
of maximum. Since t1, t2, t3, . . . , tn have identical beta dis-
tributed probability density function and we are assuming now
that when the sample size is large (n → ∞) the lack of inde-
pendence may be ignored (see [9]) , the distribution of tn can
be obtained. Let Ftn(x) = P (tn ≤ x). Using this assumption
and the fact that t′is have identical beta distribution, it can be
shown using a well known theory on the distribution of maxi-
mum that the probability distribution function of tn , denoted
herein by ftn(x), is given in terms x by

ftn(x) = n [Ft(x)]
n−1

ft(x)

Explicitly we have

ftn(x) = n

[
Beta

(
x, 12 ,

n−p−1
2

)
Γ
(
n−p
2

)
Γ
(
1
2

)
Γ
(
n−p−1

2

) ]n−1
(1− x)(

n−p−1
2 )−1

√
xBeta

(
1
2 ,

n−p−1
2

) , 0 < x < 1 (15)

Let x0 denote the asymptotic critical value of tn at signifi-
cance level α. To obtain x0, it is neccessary to evaluate

Prob(tn ≥ x0) =

1∫
x0

ftn(x)dx (16)

and then set (16) equal to α and solve the resulting equation for
x0. That is, evaluating the equation

1∫
x0

ftn(x)dx=α (17)

gives the asymptotic critical value x0.

2.1 Evaluation of Asmptitic Critical values and Upper
bounds of tn

In Table 1 below, we present asymptotic critical values x0
and upper bounds t0 of the critical values of tn. They were
computed by solving equations (14) and (18), at significance
level α = 0.05 for sample sizes up to n = 100 and regres-
sion parameters p = 2 and 3. It is observable from Table
1 that the asymptotic critical values x0 and the upper bounds
t0 are overwhelmingly close. Figure 1 is a multiple graph of
x0, t0 versus n for p=3 for large sample sizes. The closeness
of the two curves is impressively overwhelming. The values
of x0 and t0 for sample sizes n=20 and for regression parame-
ters p = 2 and 3 are also displayed in Table 2. It is observed
from Table 2 that even for small sample sizes, the values of x0
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Figure 1. Graph of x0, t0 versus sample size n = 200; p = 3

and t0 differ but not markedly. Figure 2 is a multiple graph of
x0, t0 versus n verus for p=3 for small sample sizes. The same
closeness between the the two curves as in Figure 1 is also ob-
served. The indistinguishable pattern and closeness exhibited
by these graphs (Figures 1 and 2) makes our observation in
Tables 1 and 2 more salient and noticeable.

Figure 2. Graph of x0, t0 versus sample size n = 20; p = 3

3 Simulation Study
(a)
In this section, some simulation results are presented to

study and compare the power performances of the statistic tn
when using the asymptotic critical values x0 and the upper
bounds are used t0 . All simulations were performed using
the statistical software R.

Firstly, we consider a linear regression model with two re-
gression coefficients or parameters:

Y = β0 + β1X1 + ε

where the true parameters were taken as β0 = 1,β1 = 3. The
values of the explanatory variableX1 were sampled from a uni-
variate Gaussian distributed population with parameters µ = 5
and σ2 = 2 for n = 30, 45 and 50. The values X1 were held
constant throughout the simulations. The values of the error
term were generated from a Gaussian distributed population
with parameters µ = 0 and σ2 = 1 and varied throughout the
simulations.
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The simulation reported here was based on the following
procedures: (a) A set of n values of the explanatory variable
X1 was sampled the normal distribution with parameter µ = 5
and σ2 = 2. (b) One set of Ŷ values of size n was was de-
termined according to the fixed equation Ŷ = 1 + 3X . (c)
Ten thousand (10,000) sets of values of the error term ε values
each of size n were generated according to a normal distribu-
tion with mean 0 and variance σ = 1 . (d) Then 10,000 sets of
Y values each of size n were generated by adding each set of
the values of ε to a corresponding set of Ŷ values.

In each of these 10,000 samples of y each of size n, we in-
troduced an outlier by subtracting a constant c from the min-
imum of each sample (we contaminate each sample by sub-
tracting a constant c from the minimum value in that sample
(min(yi)− c), i = 1, 2, ..., n). We also considered introducing
an outlier by adding a constand c to the maximum value in each
dataset of the response variable (max(yi) + c), i = 1, 2, ..., n).
Then, we computed the values of the test statistic tn by con-
sidering only the largest Zi-value from each dataset. A total of
10,000 values of the test statistic tn were computed. We mea-
sured the power of the test statistic as the percentage of correct
rejection of the null hypothesis of no outlier.

For instance, for c = 2, α = 0.05 , p = 2 , n = 30 the
asymptotic critical value of tn is x0 = 0.3100 (see Table 1).
Any of the 10,000 computed values of the test statistic tn that is
greater than or equal to the asymptotic critical value 0.3100 is
said to be significant at five percent level and thus is declared as
an outlie. From the simulation conducted, 2424 out of 10,000
(24.24%) these values were found to be greater than or equal
to 0.3100 when n = 30 (see Table 3).

Similarly, for c = 2, α = 0.05 , p = 2 , n = 30, we have that
t0 = 0.3111 for critical value of tn computed using Bonferroni
inequality (see Table 1). Any of the 10,000 computed values
of tn that is greater than or equal to the critical value 0.3111 is
said to be significant at five percent level and thus is declared as
an outlier. From the simulation conducted, 2398 out of 10,000 (
23.98%) of these values were found to be greater than or equal
to 0.3111 (see Table 3). We repeated the procedure for p = 2,
c=3 and 4 and the results are displayed in Tables 3, 4, and 5.

(b)
Here, we consider a linear regression model with three re-

gression coefficients:

Y = β0 + β1X1 + β2X2 + ε

where the true parameters were taken as β0 = 1, β1 = 3 and
β2 = 2. The explanatory variables X1 and X2 were generated
from a bivariate normal distribution with mean µ1 = 5, σ2

1 = 2
, µ2 = 4, σ2

2 = 1 and and covariance σX1,x2 = 0.4 for n =
30, 45 and 50. The variables X1 and X2 were held constant
throughout the simulations. The values of the error term were
generated from a Gaussian distribution with mean µ = 0 and
variance σ2 = 1 and varied throughout the simulations.

The simulation reported here for the case of p = 3 was
based on the following procedures: (a) A pair of the explana-
tory variables, (X1,X2) of size nwas sampled from a bivariate
Gaussian distribution with the aforementioned parameters. (b)
One set of Ŷ values of size n was was determined according
to the fixed equation Ŷ = 1 + 3X1 + 2X2. (c) Ten thousand
(10,000) sets of ε values each of size n were generated accord-
ing to a normal distribution with mean 0 and variance σ = 1 .
Then 10,000 sets of Y values each of size n were generated by
adding each set of values of ε of size n to a corresponding set
of Ŷ values.

In each of these 10,000 samples of Y each of size n, we
introduced an outlier by subtracting a constant c from the min-
imum of each sample (we contaminate each sample by sub-
tracting a constant c from the minimum value in that sample
(min(yi)− c), i = 1, 2, ..., n). We also considered introducing
an outlier by adding a constand c to the maximum value in each
dataset of the response variable (max(yi) + c), i = 1, 2, ..., n).
Then, we computed the values of the test statistic tn. A total of
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10,000 values of the test statistic tn were computed. We mea-
sured the power of the test statistic as the percentage of correct
rejection of the null hypothesis of no outlier.

For example. for α = 0.05 , p = 3 , n = 30, we have that
x0 = 0.3199 for the asymptotic critical value of tn (see Table
1). Any of the 10,000 computed values of the test statistic tn
that is greater than or equal to 0.3199 is said to be significant
at five percent level and thus is declared as an outlier.

From the simulation conducted, 961 out of 10,000 ( 9.61%)
of these values were found to be greater than or equal to 0.3199
(see Table 6).

Similarly, for α = 0.05 , p = 2 , n = 30, we have that
t0 = 0.3211 for critical value of tn computed using Bonferroni
inequality (see Table 1). Any of the 10,000 computed values
that is greater than or equal to the tabulated value 0.3211 is said
to be significant at five percent level and thus is declared as an
outlier. From the simulation conducted, 931 out of 10,000 (
9.31%) of these values were found to be greater than or equal
to 0.3211 (see Table 6). We repeated the procedure for p = 3,
c=3 and 4. The results are displayed in Tables 6, 7 and 8.

The percentage of outlier detection (% detect ) obtained by
using x0 and t0 are displayed in Tables 3-8 below. Using the
simulations considered herein, the percentage of correct outlier
rejection is slightly higher when asymptotic critical values of
the test statistic tn are used than when the upper bounds of tn
are used as can be observed from Tables 3-8. This performance
is consistent n=30,45, 50, 60, 70 and 80 and for c=2,3,and
4. Using these results, we may say that that the asymptotic
criticals represent a slight improvement over the Bonferroni-
inequality generated critical values. It can be shown that even
for small sample sizes that the x0 possesses the same properties
over t0.

4 Conclusions

The principles employed in this work in deriving asymptotic
critical values x0 of the test statistic tn involved using the exact
distribution of this test statistic assuming lack of independence
is ignored asymptotically(when (n⇒∞), while the principles
employed by [1] in obtaining the upper bound t0 of the critical
value of tn involved using the concept of the Bonferroni
inequality. It was found that the asymptotic critical values
x0 agree to to all two decimal places with the upper bounds
t0 of the critical values of tn obtained by [1]. They exhibit
negligible difference from three decimal places upwards. We
have observed that asymptotic critical values are consistently
smaller than the upper bound t0 of the critical value of tn and
that the percentage of correct rejection of the null hypothesis is
higher when the asymptotic critical values x0 are used. These
two observations have serious implications when reference
is made to the power performance of tn . If the selection
of a hypothesis test is to hinge on its ability to distinguish
between the two hypotheses being tested (null and alternative
hypotheses), then using x0 is obviously preferred to using t0.
One may say that these asymptotic critical values represent an
improvement over the Bonferroni-inequality generated critical
values of tn. In addition, the procedures or methodology
used herein provides a very good alternative to the use of the
Bonferroni inequality. We may therefore conclude by saying
that the suggestion by [9] is a plausible one as the upshots of
its implementation (for any value of n) are very favorable.
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