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Abstract In this paper, a simple asymptotic test statistic for
identifying multiple outliers in linear regression is proposed.
Sequential methods of multiple outliers detection test for
the presence of a single outlier each time the procedure is
applied. That is, the most severe or extreme outlying obser-
vation (the observation with the largest absolute internally
studentized residual from the original fit of the mode to the
entire observations) is tested first. If the test detects this
observation as an outlier, then this observation is deleted, and
the model is refitted to the remaining (reduced) observations.
Then the observation with the next largest absolute internally
studentized residual from the reduced sample is tested, and so
on. This procedure of deleting observations and recomputing
studentized residuals is continued until the null hypothesis
of no outliers fails to be rejected. However, in this work our
method or procedure entails calculating and uses only one
set of internally studentized residuals obtained from fitting
the model to the original data throughout the test exercise,
and hence the procedure of deleting an observation, refitting
the data to the remaining observations (reduced values) and
recomputing the absolute internally studentized residuals at
each stage of the test is avoided. The test statistic is incor-

porated into a technique (procedure) that entails a sequential
application of a function of the internally studentized residuals.
The procedure is a straightforward multistage method and
is based on a result giving large sample properties of the
internally studentized residuals. Approximate critical values
of this test statistic are obtained based on approximations
that depend on the application of the Bonferroni inequality
since their exact values are not available. The new test
statistic is very simple to compute, efficient and effective in
large data sets, where more complex methods are difficult
to apply because of their enormous computational demands
or requirements. The results of the simulation study and nu-
merical examples clearly show that the proposed test statistic
is very successful in the identification of outlying observations.

Keywords Asymptotic, Bonferroni Upper Bound, Critical
Values, Internally Studentized Residuals, Outlier, Robust,
Regression Diagnostics, Test Statistic
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1 Introduction

Data collected by researchers commonly contain one or few
unusual observations (outliers) that do not seem to belong to
the pattern of variability exhibited by other observations in the
set. In a regression problem, observations are said be outlying
based on how unsuccessful the fitted model is in accommo-
dating them. Observations corresponding to excessively large
residuals (the difference between the observed value and the
value obtained from fitting a model to the data) are usually
treated as outliers. A book by Barnett and Lewis [1] is a very
valuable comprehensive book on the treatment of outliers.

Outliers may occur as a result of gross mistakes or errors
during the collection, recording, or transcription of the data or
as a result of gross deviation from prescribed experimental pro-
cedures. In a least squares analysis of linear regression models
, outliers can be excessively influential in the estimation of pa-
rameters. The presence of outliers in a data set can mar or dis-
tort the inferential process such as estimation, and hence render
the standard tests of hypotheses meaningless. Their presence,
if unnoticed and not tackled properly, can grossly affect stan-
dard errors of estimators (by inflating standard error of estima-
tors), reducing the power of test statistics, afflicting confidence
intervals, and seriously distorting conclusions about relation-
ships between variables. The existence of outliers can severely
distort the summary quantities and analyses of data.

Of particular importance or concern to data analysts in many
fields is the detection of outliers in linear regression model-
ing, because of the widespread application or use of regression
technique. Also, outliers have been a serious concern in the
analysis of linear regression models basically because of the
vulnerability shown by regression methods or techniques in the
presence of outliers. Excellent book-length treatments of out-
liers include [1], [2], [3], [4]. See also papers of [5],[6], [7],[8],
[9], [10], [11], [12], [13], [14].

Screening data collected by field workers for outliers is an
integral part of model building and this has drawn a great deal
of attention in regression diagnostics, particularly on the iden-
tification of a single outlier. Attention has now shifted to the
more tasking and computationally tedious or burdensome prob-
lem of detecting multiple outliers, which is the main focus of
this work.

There are two main types of methods that have been used to
identify multiple outliers. They are the block methods and the
stepwise methods. Stepwise procedure is also called ”consecu-
tive” or ”sequential” method. The steppwise procedure is used
to test for the presence of a single outlier each time the pro-
cedure is applied. There are two applications of the stepwise
method. They are the ’Inward’ and ”Outward” applications.
In applying an inward stepwise procedure, the most sever out-
lier is tested first using the entire n observations first, then the
next most sever, and so on. The procedure terminates when
the kth test does not detect an outlier. The number of out-
lyng observations declared is k − 1. This procedure has the
advantage that the number of most likely observation in the
data set need not be specified in advance. Outward stepwise
method , on the other hand, requires the prespecification of k,
the number of most likely observations in the data set. Unlike

inward stepwise procedure, the outward procedure begins by
testing the least sever outlying observation among the k most
outlying observations. If the test detects or identifies this least
sever outlying observation as an outlier, all other more extreme
outlying observations in the prespecied k most outlying obser-
vations most outlying observation are judged to be outliers as
well, and the test procedure terminates. Otherwise, the least
extreme outlying is deleted from the set ( k is reduced by one)
and the test is carried out on the least extreme outlier outlying
observation in the remaining group of k− 1 suspected outliers,
and so on. Demerits of this procedure are (i) the need to pre-
specify k . (ii) the enormous computational effort involved,
and (iii) Swamping may occur if k is too large.

Block methods use a set of k > 1 observations at each phase
or stage of the test and consider the outlyingness of the group
as a whole. The procedure requires the user to specify k, the
maximum number of suspected outlying observations believed
to be in the data set, before the procedure can be applied. They
entail grouping the data into a clean subset without outlying
obsrvations and a contaminated subset that consists all the po-
tential outlying obsrvations and then test the outlyingness of
the complementary subset. The block procedures are liable or
prone to swamping and are computationally intensive.

The earliest method for multiple outliers identification in re-
gression models is credited to Mickey at al.[15]. Mickey at
al.[15] proposed a method of multiple outliers identification
in the context of a stepwise-regression calculation. Mickey
at al.[15] applied a stepwise regression approach and included
dummy variables that identify outliers to the basic model. The
method first finds the single outlying observation whose re-
moval causes the highest reduction in the sum of squared resid-
uals, then the next observation outlying observation whose re-
moval further engenders reduction in the sum of squared resid-
uals, and so on. These observations are then ordered accord-
ingly. They maintained that cases can be considered as outlying
observation in a regression structure if their deletion results in
substantial reduction of the residual sum of squares. They used
stepwise regression programs to implement this procedure.

Considering multiple outliers, Gentleman and Wilk [16]
adopted a method for group outliers detection that involves
identifying the ”k most likely subset of outliers” in a data set,
the removal or deletion of which causes the largest reduction in
the residual sum of squares. That is, the method was aimed at
identifying the most outlying subset of k observations whose
removal or deletion produced the highest reduction in the sum
of squared residuals. Setbacks of their procedure are (a) the
problem of specifying k in advance and (b )the tremendous or
enormous computational efforts are involved. They presented
the reduction in the sum of squared residuals resulting from
refitting the model after deleting k observations i1, i2, ..., ik as

Qk =

k∑
i

t2ir

and based the test statistic for deleting the k most likely outliers
on the maximum of the

(
n
k

)
possible values of Qk. However,

exact critical values of this test statistic are not available, and
approximations are obtained via the Bonferroni inequality. It
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has been pointed out that this method is not well suited for
routine application.

Marasinghe [17] proposed a new test statistic, Fk, for flag-
ging multiple outlying observations in linear regression. Ini-
tially, a subset consisting of k observation to be tested is se-
lected as follows: The first observation in the subset is the
observation that has the largest absolute studentized residual
from the original fit of the model. This value or observation
is then deleted , and the model is refitted using the remaining
n − 1 observations. The observation that has the largest abso-
lute studentized residual from this refitting is then included in
the subset. This process is continued until the subset consisting
of k observations is determined. The test statistic Fk is defined
as

Fk =
(S −Q∗

k)

S

where S = (n− p)σ̂, Q∗
k =

k∑
i

a2ir and ai =
ei√

1− hii

is a

transformation of the studeiitized residuais termed “adjusted
residuals”. Using Fk, one rejects the null hypothesis of no-
outliers when Fk is smaller than a specified critical value. If
the test statistic Fk is found to be significant, the most extreme
outlying observation in the subset as determined by the largest
studentized residual is deleted and the procedure is repeated
for the (k − 1) observations in the subset using the remain-
ing n − 1) observations. The procedure is terminated when a
test fails to reject the null hypothesis of no-outliers. The pro-
cedure proposed by Marasinghe [17] is a multistage procedure
for flagging multiple outliers in linear regression models.

The multistage method is effective in some cases, but de-
mands prespecifying the maximum number of outliers (in this
case k) one can then detect. The method can suffer gravely if
the chosen value fo k is either larger or smaller than the actual
number of outliers present in the data. It entails a considerable
amount of computing time and is computationally demanding.

In this work, a straightforward stage-wise procedure for
identifying of multiple outliers in the response variable in least
squares analysis of linear regression is proposed. Unlike the
aforementioned works, the procedure in this paper does not in-
volve prespecifying k or deletion (removal) of observation of
any kind throughout the procedure. The test statistic uses a
function of the internally studentized residuals to sequentially
detect a set of outlying observations. This method requires
computing only one set of internally studentized residuals from
fitting the model to the original data. It involves the use of in-
ternally studentized residuals computed from the initial (orig-
inal) fit of the model to the entire data, thereby circumventing
the cumbersomeness and tedium associated with the technique
of refitting the model to the reduced data at each stage the null
hypothesis is being tested. Also, the problems associated with
specifying or stipulating in advance the number of outliers to
be deleted are also completely avoided. The only input needed
is the initial internally studentized residuals computed from fit-
ting regression model to the entire data. Further advantages of
this method are saved in the computing time and ease of com-
putation. Above all, it is well suited for routine application
in applied regression analysis and can easily be applied by the

researcher.
One of the main methods for outlier detection is the analysis

residuals. Suppose we have a classical linear regression model

Y = Xβ + ε, (1)

where Y is the n × 1 vector of observations, X is an n × p
matrix of constants, β is a p×1 vector of unknown parameters
to be estimated and ε is an n×1 vector of normally distributed
errors. Assuming that E(ε) = 0 and V ar(ε) = σ2I , the least
squares estimator of β in (1) is given by

β̂ = (X′X)−1X′Y

and vector of residuals is

e =Y −Xβ̂

=(I −X(X′X)−1X′)ε.

The ith element of e is ei = yi − ŷi, where ŷi is the pre-
dicted value of yi. The variance-covariance matrix of e is

Var(e) = (I −X(X′X)−1X′)σ2.

Using σ̂2 =
e′e

n− p
as an estimate of σ2, the estimated

variance-covariance matrix of e becomes

V̂ ar(e) =
(
I −X (X′X)

−1
X′

)
σ̂2. (2)

The estimated variance of the ith residual ei is

V̂ ar(ei) = (1− hii)σ̂
2, (3)

where hii is the ith diagonal element of matrix
X (X′X)

−1
X′, called the hat matrix and (1 − hii)σ̂

2 is
the ith diagonal element of V̂ ar(e).

Residuals from the least squares analysis of a general lin-
ear regression model play a key role in regression diagnos-
tics. They are used in various graphical plots (such as the
rankit-plots) and procedures for checking the adequacy of the
model. Numerous graphical plots and numerical techniques
for checking model assumptions and adequacy using residu-
als are ubiquitous (or abundant) in the literature. The ordinary
least squares residuals ei, however, have certain deficient fea-
tures that dwarf their useful roles in regression diagnostics. It is
known that the ordinary least squares residuals ei are not inde-
pendent or homoscedastic, and their joint distribution depends
on X through H . These deficiencies restrict their usefulness
in regression diagnostics.

Therefore, a transformed (standardized) version of them that
is free of these nuisance quantities is preferable. For use in di-
agnostic purposes, several standardizations or transformations
of the ordinary residuals have been proposed to overcome their
deficiencies (see [4]). Prominent among them is the internally
studentized residual which has a representation of the form

Ri =
ei

σ̂
√
1− hii

=
yi − ŷi

σ̂
√
1− hii

(4)
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The internally studentized residuals have sound statistical
properties that make them versatile in regression diagnostics.
The Studentized residuals are used as replacements for the or-
dinary residuals in graphical procedures and in other regression
diagnostics. Apart rom being diagnostic tools, they are as well
important parts of other regression diagnostic measures.

The internally studentized residuals have been studied by

many authors (see [18, 19]). Define ξi=
Ri√
n− p

. Ellen-

berg [19] derived ξi and showed that their joint distribution
is a multivariate Inverted Students function. Ellenberg [19]
showed that the marginal probability density function for any
ξi is a univariate Inverted-Students Function. Dı́az-Garcı́a and
Gutiérrez-Jáimez [18] proposed a straightforward alternative
method to the the work by Ellenberg [19]. These studies by
[18], [19] were motivated by a concern about outliers. The
results of Ellenberg [19] have been used by many authors in
deriving test statistics for outliers. Lund [20] used the result of
[19] and obtained approximate critical values of the maximum
studentized residual statistic.

2 The Proposed Test Statistic
A good number of applications in the physical, medical and

social sciences use regression models. Many regression prob-
lems require the analysis of large datasets. Franklin and Hari-
haran [21] pointed out that the internally studentized residuals
follow the standard normal distribution as the sample size n
increases. Chatterjee and Hadi [4] said that the internally stu-
dentized residuals should approximately have a standard nor-
mal distribution, especially when the sample size is large and
that the lack of independence assumption concerning the the
internally studentized residuals may be ignored. Most graphic
techniques for regression diagnostics hinge on this assumption.
The assumption that the internally studentized residuals are
(approximately) equivalent to a random sample from a standard
normal distribution is used in regression diagnostics to check
the validity of some of the model assumptions (see [4],[21]).
For instance, the rankit-plot of the ordered internally studen-
tized residuals is one of the popular regression diagnostic tech-
niques that makes use of this assumption (see [4],[21]). Based
on these asymptotic properties of these residuals, we propose a
new asymptotic test statistic for multiple outliers identification.
Define

Ti = R2
i , i = 1, 2, 3, ...n. (5)

It can be shown that asymptotically Ti has a Chisquare distri-
bution with ν = 1 degree of freedom :

Ti ≃ χ2
(ν=1). (6)

Consider a set T defined by

T = {T1, T2, T3, ..., Tn} . (7)

Let N be the number of subsets each of size n′ that can be
formed using the elements in T , meaning that we have a total
of N subsets (N =

(
n
n′
)
) each of size n′. Also let

Zj , j = 1, 2, 3, , ..., N (8)

be the sum of the n′ elements of the jth subset. Then, from the
knowledge of distribution theory, it can be shown that Zj has
a Chi-square distribution fZj (z) with sum of squared residuals
degrees of freedom. That is,

Zj ≃ χ2
(n′). (9)

We propose

Zn′ = max{Z1, Z2, ..., ZN} (10)

as a statistic for flagging the subset with the n′ most likely out-
lying observations based on the maximum of the (N =

(
n
n′
)
)

values of Zn′. Using Zn′, one rejects the null hypothesis of
no-outliers when Zn′ exceeds a specified critical value.

2.1 Evaluation of critical values of Zn′

In this section we describe a method of calculating critical
values for the proposed test statistic for large sample sizes. Ex-
act critical values of Zn′ are not available, and hence approxi-
mations of them can be obtained via the Bonferroni inequality,
denote by Zn′(α) the approximate critical value of Zn′. Find-
ing Zn′(α) would provide a standard and an objective way of
using Zn′ to identify the subset with the n′ most outlying ob-
servation(s). This idea motivates the current work. To obtain
Zn′(α), we need to evaluate the equation

∞∫
Zn′(α)

n′fZj
(z)dz = α. (11)

numerically. The computed approximate critical values Zn′(α)
for significance levels α=0.01 are 0.05 and ν = 1, 2, 3, 4, 5, 6
and 7 are presented them in Table 1 below. They were obtained
using the Mathematica software version 12.

Table 1. Upper bounds for the Critical values of Zn′ for multiple outliers
identification in linear regression.

Subset
Size (n′)

α = 0.01 α = 0.05

1 6.6349 3.8415
2 10.5966 7.3778
3 13.7064 10.2355
4 16.4239 12.7619
5 18.9074 15.0863
6 21.2318 17.2722
7 23.4398 19.3588

The test statistic Zn′ is used to test a no-outliers hypothesis
at each stage. For each value of n′ = 1, 2, 3, ..., N (starting
with n′ = 1), the value of Zn′ is computed and compared with
the corresponding critical value Zn′(α). If Zn′ is larger than
the critical value Zn′(α), null no-outliers hypothesis is rejected
and the observation(s) in that subset are judged to be outliers.
The procedure is stopped when a test fails to reject the null
hypothesis of no-outliers.
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3 The test procedure

With respect to the model discussed in the introduction, the
test procedure commences with obtaining a set consisting of
the squares of the internally studentized residuals (see equa-
tion (5)). To screen the response variable Y for a suspected
set of outliers, we begin by forming subsets (N =

(
n
n′
)
) of

the elements of (5). Usually we start with n′ = 1 to obtain
n subsets each consisting of one value. Then we compare the
largest value among these subsets with the critical value, Z1(α)
and make a decision. If Z1 > Z1(α), we reject the no-outlier
null hypothesis and proceed to the second stage. Next, we put
n′ = 2 and obtain N =

(
n
2

)
subset each consisting of two

elements. We compute the sum of the values in each subset
and compare the largest sum with the critical value Z2(α). If
Z2 > Z2(α), we reject the no-outlier null hypothesis and pro-
ceed to the third stage. This process is continued (with the
same internally studentized residuals from the initial fit of the
model) until the null hypothesis of no-outliers fails to be re-
jected, thus determining thee subset with the most outlying ob-
servations) present.

4 Application to real data

We now demonstrate the use of the new test statistic in flag-
ging the presence of multiple outliers in linear regression. We
demonstrate this using real data which are very frequently re-
ferred to in regression diagnostics.

4.1 Stack loss data

Here we present an example that is based on stack loss data
from the work of [22], which has been used by many authors in
regression diagnostics, particularly for multiple outliers. The
stack loss dataset has 21 observations with 3 independent vari-
ables (see Table 2). The data set consists of the dependent vari-
able (Y ) which is the percent of the in-going ammonia that
is lost by escaping in the unabsorbed nitric oxides. Indepen-
dent variables are as follows: X1 =air flow (which reflects the
plant’s operation rate), X2 =temperature of the cooling water
in the coils of the absorbing tower for the nitric oxides, X3

=concentration of nitric acid in the absorbing liquid.
Column 6 in Table 2 contains the values of the set T (see

equation (7)). For a fixed n′, we obtain N =
(
n
n′
)

subsets
of the values in column 6. Among these subsets, we pick the
subset whose elements give the largest sum. It is this sum (the
value of Zn′) that we compare with the critical value Zn′(α).
We begin with smallest value of n′ (in this case n′ = 1) and fix
α = 0.05 for all n′ to be used in this example. The number of
outliers to be flagged or declared is determined when the value
of test statistic exceeds its critical value at a given stage.

(1). For Zn′ = 1, we have only
(
n
1

)
= 21 subsets each con-

taining one element. The subset with the largest element is
{6.9602}. From Table 1, Z1(0.05) = 3.8415. So we declare
the value of Y with serial number 21 to be an outlier, since
Z1 = 6.9602 > Z1(0.05) = 3.8415.

Table 2. Stack-Loss Data

sn
Air

flow (X1)
Cooling

water (X2)
Acid

cont.(X3)
Stack

loss (Y)
Ti = R2

i

1 80 27 89 42 1.4241
2 80 27 88 37 0.5124
3 75 25 90 37 2.3902
4 62 24 87 28 3.5412
5 62 22 87 18 0.2939
6 62 23 87 18 0.9317
7 62 24 93 19 0.6952
8 62 24 93 20 0.2351
9 58 23 87 15 1.0931

10 58 18 80 14 0.1908
11 58 18 89 14 0.7819
12 58 17 88 13 0.9381
13 58 18 82 11 0.2303
14 58 19 93 12 0.0003
15 50 18 89 8 0.6548
16 50 18 86 7 0.0896
17 50 19 72 8 0.3736
18 50 19 79 8 0.0235
19 50 20 80 9 0.0412
20 56 20 82 15 0.2061
21 70 20 91 15 6.9602

(2). For n′ = 2, we obtained
(
n
2

)
= 210 subsets each

with two elements. Out of these 210 subsets, the sub-
set {6.9602, 3.5412} has the largest sum value of 10.5014
(Z2 = 10.5014). From Table 1, Z2(0.05) = 7.3778. So we
declare values of Y with serial numbers 21 and 4 to be out-
liers, since Z2 = 10.5014 > Z2(0.05) = 7.3778.

(3). For n′ = 3, we obtained
(
n
3

)
= 1330 subsets each

with three elements. Out of these 1330 subsets, the sub-
set {6.9602, 3.5412, 2.39018} has the largest sum of 12.8916
(Z3 = 12.8916). From Table 1, Z3(0.05) = 10.2355. So we
declare values of Y with serial numbers 21, 4 and 3 to be out-
liers since Z3 = 12.8916 > Z3(0.05) = 10.2355.

(4). For n′ = 4, we obtained
(
n
4

)
= 5985 subsets each

with four elements. Out of these 5985 subsets, the sub-
set {6.9602, 3.5412, 2.39018, 1.42406} has the largest sum of
14.3157 (Z4 = 14.3157). From Table 1, Z4(0.05) = 12.7619.
So we declare values of Y with serial numbers 21, 4 , 3 and 1
to be outliers since Z4 = 14.3157 > Z4(0.05) = 12.7619.

(5). For n′ = 5, we obtained
(
n
5

)
= 20349 subsets

each with five elements. Out of these 20349 subsets, the
subset {6.9602, 3.5412, 2.39018, 1.42406, 1.09313} has the
largest sum of 15.4088 (Z5 = 15.4088). From Table 1,
X5(0.05) = 15.0863. So we declare values of Y with
serial numbers 21, 4 , 3, 1 and 9 to be outliers since
Z5 = 15.4088 > Z5(0.05) = 15.0863 .

(6). For n′ = 6, we obtained
(
n
6

)
= 54264 subsets each

with six elements. Out of these 54264 subsets, the sub-
set {3.5412, 6.9602, 2.39018, 1.42406, 1.09313, 0.93814} has
the largest sum of 16.3469 (Z6 = 16.34698). From Table 1,
Zn(0.05) = 17.3588 and 16.3469 < 17.3588. Further compu-
tations for n′ = 7, 8, .., 21 did not yield any significant results
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(failed to reject the no-outlier null hypothesis). Table 3 gives a
summary of the results for each phase or stage of the multistage
search for a subset of n′ most likely outlying observations.

Table 3. Diagnostic measure for the Stack-loss data

4.2 Discussion

As aforementioned, the ”stack loss” dataset is well-known
and is one of the most referred datasets in the context of mul-
tiple outliers identification in regression diagnostics. In a well-
researched article, Dodge [23] investigated the history of this
dataset and pointed out that about 26 distinct sets of detected
outliers have been found by various methods used in analyzing
this data set. According to him, the most cited set being a set
containing the observations 1, 3, 4, and 21. These data have
been investigated and analyzed by many authors and discussed
extensively in the books by [23], [24], [25], as well as in the
papers by [11], [18].

The Stack loss data set was analyzed by Atkinson [5]. One
set of conclusions given by Atkinson [5] is that observations
(values of the response variable Y ) with serial numbers 1, 3, 4
and 21 are outliers. Note that the stack loss data set contains
three covariates and this conclusion by Atkinson [5] is given
when all three covariates are used in analysis.

Nurunnabi et al. [6] introduced a robust influence distance
that can identify multiple influential observations ( IOs) which
are named ID, and proposed a sixfold plotting technique that
is designed for the identification and classification of multi-
ple outliers, high leverage points and influential observation on
the same graph at one time (simultaneously) in linear regres-
sion. Their method correctly classifies the observations 1, 3, 4,
9 and 21 as outliers. They also applied the standardized Stu-
dentized residual statistics and the Standardized LMS resid-
uals. The standardized Studentized residual statistic identify
only one observation (case 21) as an outlier but mask all other
potential outliers. The Standardized LMS residuals identify
five cases 1,2, 3, 4, 9 and 21 as outliers.

Imon [26] developed a generalized version of DFFITS based
on group deletion and then proposed a new technique to iden-
tify multiple influential observations. The GDFFIT was ap-
plied to the Stack Loss Data and it correctly identifies all five
influential cases, namely1, 2, 3, 4 and 21 with case 2 as an in-
fluential observation and cases 1, 3, 4 and 21 as outliers. He
also applied the reweighted least squares (RLS) introduced by
[21]. The robust RLS technique identifies cases 1, 3, 4 and 21
as outliers. By applying the multistage procedure, Marasinghe
[17] declared observations 21 and 4 as the only outliers. In
summary, we consider observations of the response variable Y
with serial numbers 1, 3, 4, 9 and 21 as outliers.

5 Simulation Study
In this section we conduct a simulation study using using R

software to evaluate the performance of the test statistic pro-
posed in Section 2. We used a simple linear regression model
Y = β0 + β1X + ε in the simulation study. The residuals are
not in any way affected by the particular values of β0 and β1

used in the simulation. We therefore set β0 = 1 and β1 = 2.
Thus, Y = 1 + 2X + ε.

Clean values of Y were obtained as follows: (a) n values of
X were sampled from a normal distribution with mean µ = 2
variance σ2 = 0.11 (both arbitrarily chosen).(b) One set of
Ŷ values was generated by adding the n values of X to Y =
1 + 2x. (c) Then 1000 sets of ε values were sampled from a
standard normal distribution and each added to Ŷ to generate
1000 sets of Y values. The sample sizes are taken as n =
10, 15, 20 and 25. At each value of n, we simulated 1000 sets
of Y values.

Then following the introduction of outliers, we introduced
(planted) outliers using the formula below:

y∗ij = λ∗max(Yj)+yij , j = 1, 2, 3, , ..., 1000, i = 1, 2, 3, , ..., n.
(12)

where yij is the selected value of Yj to be contaminated or
polluted, y∗ij is the polluted yij , max(Yj) is the maximum of the
observations in the vector Yj , and λ is the magnitude of outlier,
see ([27], [28], [29], [30], [31]). Up to four outliers per sample
were planted. We denoted the number of outliers per sample by
η. The table entries are percentage of planted outliers that were
correctly identified by the proposed test statistic. A nominal
size of α = 0.05 was used throughout the test. For clarity of
purpose, a schematic notation for the simulation study is shown
in Table 4.

Table 5 shows the percentage of correctly identified outlier
by the proposed test statistic. The behavior of the test statis-
tic under a particular set of λ and n values was examined by
varying the magnitude λ of the outlier and the sample size n
throughout the simulation study. Perusing through the con-
tents of Table 5 shows clearly the effectiveness of the proposed
test statistic in detecting outliers. The results of the simulation
study show that the statistic can flag or identify a reasonable
number of outlying observations for each set of λ and n.

Table 4. Schematic notation for the simulation study for a sample of size n

6 Conclusions
The method introduced in this work entails a sequential ap-

plication of a function of the internally studentized residuals
obtained to detect or flag outliers. The proposed method uses
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Table 5. Percentage of outliers correctly identified

λ η Sample Sizes
10 15 20 25

1.5 2 47 58 61 72
2.0 2 59 67 73 82
1.5 3 61 75 79 88
2.0 3 64 78 89 96
1.5 4 66 77 83 91
2.0 4 70 79 89 97

only initial internally studentized residuals computed from fit-
ting the model to the original entire data throughout the search
for outliers in the data. Thus, the tediousness associated with
the method of refitting the model to the reduced data and re-
computing the internally studentized residuals at each stage of
the search for outliers is completely eschewed. It is very sim-
ple to use and with a comprehensible interpretation, that can
be a valuable tool in applied statistical analysis. The proposed
new method is very applicable in large datasets in high dimen-
sion, where more complex procedures are difficult to use be-
cause of their high computational demands. An application to
a real data set shows that the method proposed herein is equally
good as those of other authors. Also, the simulation study con-
ducted shows that the proposed test statistic is effective enough
in detecting outlying observations. In summary, the approach
is simple and its advantages are saving in computing time and
ease of application.

REFERENCES
[1] Barnett V., Lewis T., “Introduction,” Outliers in Statistical

Data, 2nd ed, John Wiley and Sons, 1978, pp. 6-15.

[2] Fox J., “Outlying and influential Data,” Regression diagnostics:
an introduction, Sage, Newbury Park, 1991.

[3] Rousseeuw P. J., Leroy A. M., “Introduction,” Robust regression
and outlier detection, Wiley, New York, 1987.

[4] Chatterjee S., Had A . S., “Regression Diagnostics: Detection
of Model Violations,” Regression analysis by example, Wiley,
New York, 2015.

[5] Atkinson A.C., “Fast Very Robust Methods for the Detec-
tion of Multiple Outliers,” Journal of the American Statisti-
cal Association, vol. 89, no. 428, pp. 1329–1339, 1994. DOI:
10.1080/01621459.1994.10476872.

[6] Nurunnabi A.A.M., Nasser M., Imon A.H.M.R., “Identifica-
tion and classification of multiple outliers, high leverage points
and influential observations in linear regression,” Journal of
Applied Statistics. vol. 43, no. 3 , pp. . 509-525, 2016. DOI:
10.1080/02664763.2015.1070806.

[7] Hadi A.S., “A new measure of overall potential influence in lin-
ear regression,” , Computional Statistics and Data Analysis, vol.
14, no. 1, pp. 1–27, 1992. DOI: 10.1016/0167-9473(92)90078-t.

[8] Hadi A.S., Simonoff J.S., “Procedures for the identification of
multiple outliers in linear models,” Journal of the American
Statistical Association, vol. 88, no. 424 ,pp. 1264–1272 1993.
DOI:10.2307/2291266.

[9] Bagdonavicius V., Petkevicius L., “ A new multiple out-
liers identification method in linear regression,” Metrika, 2019.
.DOI:10.1007/s00184-019-00731-8

[10] Peña D., “A new statistic for influence in linear re-
gression, Technometrics, vol.47, no. 1, pp. 1–12, 2005.
DOI:10.1198/004017004000000662.

[11] Denby L., Mallows C.L., “ Two diagnostic displays for robust
regression analysis,” Technometrics, vol. 19, no.1 pp. 1-13, pp.
1977. DOI:10.2307/1268248.

[12] Rousseeuw P.J., “Least median of squares regression,” Journal
of the American Statistical Association, vol. 79, no.388, pp.
871–880, 1984. DOI: 10.1080/01621459.1984.10477105.

[13] Cook R.D., “Detection of influential observation in linear re-
gression,” Technometrics, vol. 19, no.1, pp. 15–18, 1977.
DOI:10.1080/00401706.2000.10485981

[14] Cook R.D., “Influential observations in linear regression,” Jour-
nal of the American Statistical Association, vol. 74, no. 365, pp.
169–174, 1979. DOI: 10.1080/01621459.1979.10481634

[15] Mickey M.R., Dunn O.J., V. Clark V., “ Note on the Use
of Stepwise Regression in Detecting Outliers,” Computers
and Biomedical Research, vol. 1, no. 2 pp. 105-111, 1967.
DOI:10.1016/0010-4809(67)90009-2.

[16] Gentleman J.F., Wilk M.B., “ Detecting Outliers. II. Supple-
menting the Direct Analysis of Residuals,” Biometrics, vol. 31,
no. 2, pp. 387-410, 1975. DOI:10.2307/2529428.

[17] Marasinghe M.G., ”A Multistage Procedure for Detecting Sev-
eral Outliers in Linear Regression,” Technometrics, vol.27, no.
4, pp. 941-943, 1985. DOI: 10.1080/00401706.1985.10488078.

[18] Dı́az-Garcı́a J.A., Gutiérrez-Jáime R., “The distribution of
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