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We present interesting application of artificial intelligence for investigating effect of the COVID-19 lock-
down on 3-dimensional temperature variation across Nigeria (2�–15� E, 4�–14� N), in equatorial Africa.
Artificial neural networks were trained to learn time-series temperature variation patterns using radio
occultation measurements of atmospheric temperature from the Constellation Observing System for
Meteorology, Ionosphere, and Climate (COSMIC). Data used for training, validation and testing of the neu-
ral networks covered period prior to the lockdown. There was also an investigation into the viability of
solar activity indicator (represented by the sunspot number) as an input for the process. The results indi-
cated that including the sunspot number as an input for the training did not improve the network pre-
diction accuracy. The trained network was then used to predict values for the lockdown period. Since
the network was trained using pre-lockdown dataset, predictions from the network are regarded as
expected temperatures, should there have been no lockdown. By comparing with the actual COSMIC
measurements during the lockdown period, effects of the lockdown on atmospheric temperatures were
deduced. In overall, the mean altitudinal temperatures rose by about 1.1 �C above expected values during
the lockdown. An altitudinal breakdown, at 1 km resolution, reveals that the values were typically below
0.5 �C at most of the altitudes, but exceeded 1 �C at 28 and 29 km altitudes. The temperatures were also
observed to drop below expected values at altitudes of 0–2 km, and 17–20 km.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In December 2019, the global community found itself in the
wake of the spread of the novel coronavirus (CoV) disease 2019
(COVID-19) that has lead to the death of over 3.4 million human
lives across the world (Worldometers, 2021). The rapid and almost
uncontrolled spread of the disease, among other reasons, made
World Health Organization (WHO) to declare it a health emergency
and a global pandemic. The consequence was a quick reduction of
societal activities.

The Nigerian government declared schools at all levels closed
from 20 March to 24 March 2020 as a temporary measure to curb
the spread of COVID-19. A total lockdown was later imposed from
25 March which lasted to 19 August 2020 (Reuters, 2021). The first
phase of the lockdown was announced by the President on 27 April
2020 with effect from May 4 to 17, and later extended to 1 June
2020 (Ibrahim et al., 2020). During this phase, there was strict
sit-at-home order and compliance for all activities, except essential
services. The second phase of the gradual easing of the lockdown
commenced on 2 June 2020 and lasted for four weeks, which ended
on June 29 according to the officer in charge, the Secretary to the
Government of the Federation (Ibrahim et al., 2020; Oyeyemi
2020). Some of the activities that remained prohibited are inter-
state movement except for essential services, local and interna-
tional airport operations except for emergency flights, and
gatherings of more than 20 people except for workplaces.
Ibrahim et al. (2020) contains full details of the further measures
detailed in the second phase. The third phase of the easing of
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lockdown in Nigeria was announced on 30 June 2020 following the
approval of the 5th interim report of the Presidential Task Force on
COVID-19 by the Nigerian President (Ibrahim et al., 2020). This
phase was initially expected to last for four weeks from 30 June
to 27 July 2020, but was extended to beyond the month of Septem-
ber (Ibrahim et al., 2020; LEGIST, 2021). Some of the modifications
made on phase two include the gradual reopening of airports for
local flights ‘‘based on close monitoring”, resumption of schools
for returning students in secondary schools with the graduating
set to resume first, and the lifting of the ban on interstate travels.
Nationwide curfew was maintained from 10 pm to 4 am while the
use of facemasks in public places also remains mandatory and now
punishable by law (Ibrahim et al., 2020; Omilana 2020).

There are already numerous studies which have investigated
the impact of the atmosphere on spread of the COVID-19 virus,
but there is paucity of research that has investigated the impact
of the COVID-19 lockdown on the atmosphere. In one of such stud-
ies, Mandal and Pal (2020) used a relatively few days of satellite
images and field derived data in the Indian region of the Dwarka
River Basin during pre and lockdown periods to show that the land
surface temperatures reduced by about 3–5 �C in the region. For
another Indian region of Kolkata, Chowdhuri et al. (2021) con-
ducted a trend analysis of the maximum, minimum and average
temperatures during the lockdown period (24 March to 6 May)
in 2020 and at the same time for the previous four years, from
2016 to 2019. Their results showed that the increasing trend of
daily minimum, average, and maximum temperatures during the
lockdown period of March to May 2020 are respectively 0.091 �C,
0.118 �C, and 0.106 �C. These values are the lowest when compared
to values of the four prior years, indicating that, in overall, the lock-
down caused the temperatures to decrease in the region. In Raipur
city of India, Guha and Govil (2021) examined changes in the land
surface temperature during the lockdown period by comparing
data obtained during the period with data obtained during the ear-
lier periods (2013–2019). Their results also showed that the land
surface temperature was reduced during the lockdown.

In a research that reported counterintuitive findings, Gettelman
et al. (2021) used simulations from two Earth System Models (the
Community Earth System Model 2 (CESM2) and ECHAM6.3–
HAM2.3 model (Neubauer et al., 2019)) to show that the impacts
of aerosol changes on regional land surface temperatures could
cause temperatures to increase by up to + 0.3 K. Their simulation
results also showed that the peak impact of aerosol changes on glo-
bal surface temperature is a small increase (+ 0.03 K). They how-
ever noted that aerosol changes are the largest contributions to
radiative forcing and temperature changes as a result of COVID-
19 affected emissions, larger than ozone, CO2 and contrail effects.

In Africa generally, there is lacking research on impact of the
COVID-19 lockdown on the atmosphere. The present study is the
first in the region to present a comprehensive investigation on
impact of the COVID-19 lockdown on the atmospheric tempera-
tures. The method of artificial neural network is applied to 3-
dimensional temperature measurements obtained from the Con-
stellation Observing System for Meteorology, Ionosphere, and Cli-
mate (COSMIC). Artificial neural networks (ANNs) are used to
learn time series variations of the 3-dimensional atmospheric tem-
perature parameter for more than 13 years prior to the period of
the COVID-19 lockdown in 2020. The trained networks are used
to predict the expected temperature trends for the lockdown per-
iod in 2020, assuming no COVID-19 lockdown, and by comparing
with the actual measurements, the impact of the lockdown on
atmospheric temperatures is estimated. Unlike in other previous
studies, the present study also demonstrates impact of the lock-
down on temperatures at varying altitudes in the atmosphere,
starting from 0.1 to �40 km altitude.
2

ANNs are most suitable for this investigation, considering the
big data involved and established capacity of neural networks to
learn trends in complex systems (Baboo and Shereef, 2010; Okoh
et al., 2019). ANNs have been applied to analyze large and unstruc-
tured data, and to carry out functions such as: time series forecast-
ing, data processing, sequence classification, pattern re-orientation
and numerical control (Javeed et al., 2018). ANNs have also been
demonstrated to be ideal candidates for modeling atmospheric
parameters in the region (Fadare, 2009; Id et al., 2015;
Kenabatho et al., 2015; Okoh et al., 2015, 2020). Asides investigat-
ing the impact of the COVID-19 lockdown, the ANN technique is
considered in this work as a novel approach to model atmospheric
temperature for the region in three dimensional space (longitude,
latitude, and altitude) as well as time, making it possible to pre-
dict/forecast the atmospheric temperature for all given locations
in the region, using data that is not simultaneously available for
all the locations. This is the first study to present effect of the
COVID-19 lockdown on 3-dimensional atmospheric temperature
measurements, starting from ground to stratospheric altitudes of
about 40 km.

2. Data and methods

Atmospheric temperature data used in this study are radio
occultation (RO) measurements from the COSMIC mission. Mea-
surements from both COSMIC I and COSMIC II missions were used.
The data were obtained as second level (wetPrf and wetPf2) files
from website of the University Corporation for Atmospheric
Research (UCAR, https://data.cosmic.ucar.edu/gnss-ro/). Available
data from May 2006 to September 2020 were used. Data from
the website are available in Tape Archive (TAR) format. The TAR
files were first decompressed to extract the NetCDF (Network Com-
mon Data Form) files which they contain. Each NetCDF file contains
altitudinal profiles of atmospheric parameters like temperature.
The altitudinal profiles of temperature extracted from these files
were used in this study. The NetCDF files also contain badness flags
that indicate whether or not the profiles in each of the NetCDF files
passed the quality control checks. Only profiles that passed the
quality control checks were used in this study. The ‘‘quality control
checks” referred here are in the same context as described for the
‘‘badness flag” of the wetPrf files in the COSMIC Data Analysis and
Archive Center (CDAAC; see https://cdaac-www.cosmic.ucar.edu/
cdaac/cgi_bin/fileFormats.cgi?type=wetPrf). In this description, a
badness flag of 0 means that the profile passed quality control
check, while a badness flag of 1 means that the profile failed the
quality control check. Adhikari et al. (2021) contains a detailed
description of the processes and criteria involved for determining
whether or not a profile passed the quality control check. The total
number of profiles that passed quality control checks and used in
this study is 19686, and the total number of data points contained
in them is 9028733.

Inputs used for the neural network training are mainly time ser-
ies indicators and 3-dimensional space indicators. For time series
indicators, we used hour of the day (in universal time, UT), the
day of the year, and the year. For 3-D space indicators, we used lon-
gitude (in degrees), latitude (in degrees), and altitude (in km). The
hour of the day was introduced to facilitate the neural network’s
learning of diurnal variations. The day of the year was introduced
to facilitate the network’s learning of seasonal variations, and the
year was introduced to facilitate the network’s learning of long-
term variations over the years. The 3-D space indicators were
respectively introduced to facilitate the network’s learning of
spatial variations across the longitudes, latitudes and altitudes.
We also tested the effectiveness of the sunspot number (SSN)
parameter for temperature modeling. The sunspot number
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provides a representation of the solar activity which has a cycle of
�11 years. Over the years, scientists and researchers have argued
on the role/significance of solar activity on atmospheric tempera-
tures (e.g. Meadows, 1975; Schwentek and Elling, 1981; Gil-
Alana et al., 2014; Scafetta, 2014; El-Borie et al., 2020). To investi-
gate the significance of solar activity for atmospheric temperature
modeling, we considered the SSN as an additional input for the
neural network training.

For the purpose of numerical continuity from the end of one day
to the start of the next day, and from the end of one year to the
start of the next year, we employed cyclical components of the
Hour of day and Day of year as respectively shown in Eqs. (1)
and (2).

HHs ¼ sin
2p� Hour of day

24

� �
HHc

¼ cos
2p� Hour of day

24

� �
ð1Þ

DDDs ¼ sin
2p� Day of year

365:25

� �
DDDc

¼ cos
2p� Day of year

365:25

� �
ð2Þ

In all, we therefore considered the following nine input neurons
for the neural network training: Year, DDDs, DDDc , HHs, HHc , Lon-
gitude, Latitude, Altitude, and Sunspot number. To investigate the
significance of the SSN, we trained two sets of neural networks;
in one set, all of the above nine input neurons were used, and in
the other set, eight of them (excluding the SSN) were used. Both
sets are identical in every way, except that the later set does not
include the SSN input neuron. This setup made it possible to eval-
uate the contribution of the SSN as an input neuron for the net-
works. The results are demonstrated in the Results and
Discussion section.

The feed-forward back-propagation neural network method
was used for the training, and the training algorithm used is the
Levenberg-Marquardt back-propagation algorithm (Levenberg,
1944). The weight matrices and bias vectors were updated in
accordance with the optimization method for this algorithm. The
Levenberg-Marquardt back-propagation algorithm is admired
because it is fast, less computationally intensive, requires less
memory, and efficient in learning (Wilamowski et al., 2001; Kisi
and Uncuoglu, 2005; Okoh et al., 2015; Xu and Zhao, 2020).

COSMIC measurements obtained before the COVID-19 lock-
down (that is, from May 2006 to December 2019, except April to
September 2018) were used for the neural network training, vali-
dation and testing. We shall hereafter refer to this dataset as the
neural network dataset. Measurements from April to September
2020 were set aside for evaluation of the effect of the lockdown
on atmospheric temperatures, and measurements from April to
September 2018 were set aside for the purpose of control experi-
ments. The number of data points in the April to September 2018
measurements is 28880, and the number of data points in the April
to September 2020 measurements is 3324449. The choice of year
2018 for control experiment dataset is based on the requirement
that we need dataset that is similar to that of year 2020. Using data
for year 2018 ensures that we retain data for year 2019 in the neu-
ral network training dataset, so that the neural networks get to
learn the most recent trends prior to the year for which the lock-
down evaluation is done.

Prior to the neural network training, the neural network dataset
was split in 3 categories: 71.62% for training, 13.63% for validation,
and 14.75% for testing. The validation and test datasets were con-
stituted by systemically removing the data for certain days in the
years; for the validation dataset, it was the days starting from
3

day number 2 in steps of 7 days to the end of the year, while for
the test dataset, it was starting from day number 5 in steps of
7 days to the end of the year. The reason why we chose to consti-
tute the validation and test datasets systemically, rather than ran-
domly, is to ensure that these datasets contain a good distribution
of data for different years, seasons, times/hours of the days, longi-
tudes, latitudes, and altitudes.

To decide an appropriate number of neurons for the hidden
layer, we trained 15 different neural networks that differed in
the number of hidden layer neurons assigned to them, starting
from 1 in steps of 1–15. Decision of the appropriate number of hid-
den layer neurons was based on criteria of minimizing the neural
network prediction errors; the smaller the prediction error, the
better. The validation dataset was used during evaluation of the
neural network prediction errors; each of the 15 networks were
simulated to predict the atmospheric temperatures corresponding
to the validation dataset, and thereafter the mean absolute errors
(MAEs) were computed using Eq. (3).

MAE ¼
Pn

i¼1 Ci � Nij j
n

ð3Þ

The Ci s and the Ni s are respectively the COSMIC measurements
and corresponding neural network predictions, and n is the total
number of COSMIC measurements. Results of the MAEs are pre-
sented in the Results and Discussion section.

The Levenberg-Marquardt based neural network training was
implemented on MATLAB using the trainlm function on MATLAB’s
neural network toolbox. Eqs. (4) and (5) respectively indicate the
transfer functions applied between the input-hidden and hidden-
output layers.

Hm ¼ tanhðIwm � Im þ B1Þ ð4Þ
Om ¼ Hwm � Hm þ B2 ð5Þ
Im, Hm, and Om are respectively the input, the hidden, and the

output layer matrices. Iwm and Hwm are respectively the input and
hidden layer weight matrices. B1 and B2 are respectively the bias
vectors for the input and hidden layer. The layer weight matrices
and bias vectors for the finally adopted neural network are as con-
tained in Okoh et al. (2021). The flowchart in Fig. 1 contains a
descriptive summary of the processes employed in this study.
3. Results and discussions

3.1. Investigating significance of sunspot number and deciding number
of neurons for the hidden layer

To investigate the significance of SSN for atmospheric tempera-
ture prediction, we trained two sets of neural network that are
identical in every way except that the SSN was included as input
neuron in one set, and excluded in the other set. For each set, we
trained 15 neural networks that varied in their number of hidden
layer neurons, starting from 1 to 15 in steps of 1. The performance
of each network is evaluated based on MAEs computed from the
networks’ predictions of the validation dataset. The results are as
shown in Fig. 2.

The optimal network is decided based on criteria of minimizing
the MAEs. Fig. 2 shows that, for majority of the cases, the perfor-
mances of both sets of neural networks are identical; the MAEs
for the networks with and without SSN included are similar (e.g.,
for networks with number of hidden layer neurons = 2, 7, 8, 10,
11, 12, 13, 14, and 15). The network with SSN included as input
neuron is better than the one without SSN included only for the
networks with 4 hidden layer neurons. The networks without
SSN included as input neuron are better than the ones with SSN



Fig. 1. Flowchart containing descriptive summary of processes employed in this study.

Fig. 2. MAEs computed for the neural networks, with and without SSN input
neuron, and varying the number of hidden layer neurons from 1 to 15 in steps of 1.
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included for the networks with number of hidden layer neurons = 1,
3, 5, 6 and 9. The differences for the latter cases are however small
(typically less than 1 �C, except for the obnoxious networks with
only 1 number of hidden layer neuron). The averages of the MAEs
(excluding the unreliable networks with only 1 number of hidden
layer neuron) are respectively 2.15 �C and 2.11 �C for the set of net-
works with and without SSN included as input neuron. The results
indicate that the networks without SSN are slightly better than the
networks with SSN included as input neuron. The 0.04 �C differ-
ence is however insignificant compared to the average MAEs. We
conclude, in general, that there is no significant difference between
the MAEs of both sets of neural networks, especially considering
that we will be dealing with the networks which give the smallest
MAEs. The MAEs for these networks are very much identical. Pre-
cisely, we have chosen the networks with 14 hidden layer neurons
since they gave the least prediction errors (MAEs = 1.80 �C for both
the set with and without SSN included as input neuron). Statistical
test on the significance of the difference between predictions of the
neural networks (with and without sunspot numbers) for the final
versions of the neural networks (14 hidden layer neurons) was also
conducted. The two-sample t-test (implemented on MATLAB as the
‘‘ttest2” function) was applied on two vectors which independently
represent the predictions from the final versions of the neural net-
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works with and without sunspot numbers. The test analysis
returned a test decision, h = 0, which indicates that the predictions
from the two neural networks do not differ significantly at the
default 5% significance level.

Asides the foregoing slight MAE advantage of the networks
without SSN inputs over the networks with SSN inputs, the net-
works without SSN inputs offer some additional benefits; they
are easier to implement, they are faster during user runtimes,
and they make less use of computational resources. The reason is
that the number of input layer neurons is less by 1, and therefore
the dimensionality of the network is correspondingly lower. Fur-
thermore, since the network obtained from this study is intended
for operational forecasting, the network without SSN inputs is
expected to provide more accuracy during forecasts. The reason
is that the SSN parameter requires to be measured prior to being
made available for the network prediction. Since the measurement
cannot be done ahead of the future, a reasonable solution will be to
obtain the forecast SSN values from SSN models. Such SSN models
do possess inherent prediction errors which will add to the overall
error of the atmospheric temperature model. This is the reason we
have finally adopted the network without SSN input neuron. We
shall refer to this network henceforth as the validated network.
The implementation of this network is contained as a MATLAB
function in Okoh et al. (2021).

3.2. Neural network testing and error analysis

The test dataset reserved prior to neural network training was
used in this section to test performance of the validated network,
and to provide information on error analysis for the network. The
formula in Eq. (3) was used to compute MAEs for predictions of
the network which correspond to the test dataset. The analysis of
error is presented as a function of altitude since the most dominant
variation of the atmospheric temperature is altitudinal. The test
dataset was binned at 1 km interval, starting from 0 to 40 km.
For each bin, the MAE is computed based on the test dataset. Result
of the MAE as a function of altitude is shown in Fig. 3. The figure
shows that typical prediction errors of the network are in the range
of between 0.7 and 2.3 �C. The prediction errors are observed to be
greater at altitudes of about 0 km, 18 km, and 36 km. These alti-
Fig. 3. Altitudinal profiles of the Mean Absolute Errors (MAE), the Minimum
Absolute Errors (MnAE), the Maximum Absolute Errors (MxAE), the standard
deviations of the atmospheric temperatures (STD), the Coefficients of Determina-
tion (RSq), the Percentages of data points with an absolute error higher than the
MAE (PAM), and the Root-Mean-Square Errors (RMSE), binned at 1 km interval.

5

tudes are expected to be similar altitudes where the atmospheric
temperature shows greater variability because model prediction
accuracies are known to be influenced by variability of the mod-
eled parameter (e.g., Schemper, 2003; Diederen and Schultz,
2015; Okoh et al., 2020). To simulate the degree of temperature
variability at different altitudes, we computed the standard devia-
tions (STDs) for observations at each of the 1 km bins introduced
earlier. The plot marked ‘‘STD” in Fig. 3 shows altitudinal variation
of the computed standard deviations. Similar to the plot of MAEs,
the plot of STDs shows that variability of the atmospheric temper-
atures are greater at around 0 km, 18 km, and 36 km.

Fig. 3 also contains altitudinal profiles of the Minimum Absolute
Errors (MnAE), the Maximum Absolute Errors (MxAE), the Coeffi-
cients of Determination (RSq), the Percentages of data points with
an absolute error higher than the MAE (PAM), and the Root-Mean-
Square Errors (RMSE), binned at 1 km interval. The parameters
MxAE, RSq, and PAM, are respectively multiplied by factors 0.25,
5, and 0.1 so that their values fit into the scale of Fig. 3. The figure
shows that the minimum absolute errors are typically �0 at all
altitudes, indicating that there are always neural network predic-
tions that are equal to the corresponding COSMIC measurements
at all altitudes. The maximum absolute errors are in the range of
�6 to 17 �C, and the RMSEs are in the range of�1 to 3 �C. The shape
of the RMSE profile is expectedly similar to the shape of the MAE
profile, but the RMSE values are moderately greater than the
MAE values, and this is obviously due to the reason that the RMSE
systematically penalizes larger errors (Okoh et al., 2019). The PAM
values are typically �35% to 40%, the mean value for all altitudes is
36.5%, indicating that less than half (�36.5%) of the data points
have absolute errors greater than the MAE. The coefficients of
determination are in the range of �0.5 to 0.8, indicating that the
neural network model does explain greater than 50% of the vari-
ability at all altitudes.

Close to Earth surface, the MAE is about 1.6 �C which is similar
to, or even less than, typical errors obtained in recent surface tem-
perature modeling efforts. For example, Hyrkkänen et al. (2016)
investigated the error characteristics of temperature forecast in
Finland for the period 1979–2011. They reported that the rate of
root-mean-square errors that had come within a 2.5 �C error
threshold had increased from 70% to 85%–90% during the 30 years
period, indicating that 2.5 �C was an acceptable value for temper-
ature prediction root-mean-square error. More recently, Seman
(2020) demonstrated that MAEs for maximum temperature predic-
tions from the Weather Prediction Center had decreased from
about 6.0 �F in 1972 to about 3.3 �F in 2017. Considering the fun-
damental intervals of the two temperature scales, the 3.3 �F error
value can be scaled to an equivalent of about 1.8 �C. In another
study that is based on the same region as the present study,
Okoh et al. (2015) showed that typical root-mean-square errors
for their surface temperature predictions were about 2 �C and less.
The 1.6 �C MAE value obtained in the present study is therefore
comparatively satisfactory.

3.3. Effect of COVID-19 lockdown on atmospheric temperatures

To investigate the effect of the COVID-19 lockdown (which
started in March 2020 in Nigeria), we simulate the neural network
predictions for instances corresponding to those in which COSMIC
temperature measurements are available during the lockdown per-
iod (April to September 2020). It is important to clarify the ratio-
nale for this investigation here. The neural network was trained
using dataset collected prior to the COVID-19 lockdown, and as
such, the neural network predictions do not contain signatures of
the COVID-19 lockdown. On the other hand, the COSMIC measure-
ments from April to September 2020 (during the lockdown) will
contain expected signatures of the lockdown. By comparing



Fig. 5. Altitude-based distribution of differences computed between the COSMIC
measurements and neural network predictions for the months of April to
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corresponding temperature profiles from the neural network and
from the post-lockdown COSMIC measurements, the lockdown
effects on atmospheric temperatures are deduced. As a control
experiment, we repeat the same process using data of April to
September 2018. The purpose is to check that the results we obtain
as the lockdown effects are not also contained in the pre-lockdown
dataset. Fig. 4a and b show how the COSMIC measurements com-
pare with the neural network predictions for April to September
of years 2018 and 2020 respectively.

The values of correlation coefficient between the COSMIC mea-
surements and neural network predictions are respectively 0.9955
and 0.9839 for the 2018 and 2020 dataset. The coefficients of
determination are respectively 0.9911 and 0.9680. These very high
correlation coefficient values reveal that the neural network pre-
dictions have very identical trends as the COSMIC measurements,
although the datasets used here were not used for the neural net-
work trainings. The high correlation coefficient values also signify
the high accuracy to which the neural network did learn the tem-
perature variation patterns. The black lines in Fig. 4 represent the
best-fit straight lines through the data points. The equations of
these lines are respectively given by Eqs. (6) and (7) for the 2018
and 2020 dataset.

COSMIC ¼ 1:0NN þ 0 ð6Þ

September of year (a) 2018, and (b) 2020. Normalized distribution of the differences
for the months of April to September of year (c) 2018, and (d) 2020.
COSMIC ¼ 1:0NN þ 3:3 ð7Þ
COSMIC represents the COSMIC measurements while NN repre-

sents the neural network predictions. In the ideal case that the
neural network predictions exactly replicate the COSMIC measure-
ments, we expect to have an equation of the form:
COSMIC ¼ 1:0NN þ 0:0, with zero intercept and a slope of 1. Since
the equations of the best-fit straight lines are calculated based on
distance weights of the points around the majority, a similar ideal
equation will be obtained, not only if the neural network predic-
tions are exactly equal to the COSMIC measurements, but also if
the distribution of the errors is perfectly Gaussian. This explains
why Eq. (6) is ‘almost’ ideal, having a slope of 1.0 and an intercept
of 0.2. The ‘close to ideal’ nature of Eq. (6) also tells that the distri-
bution of the neural network prediction errors is almost perfectly
Gaussian for the 2018 dataset. This assertion is corroborated by
the distribution curve of Fig. 5c. The scenario gives credence, in
our control experiment, to the idea that the neural network predic-
tions are not notably skewed in a particular direction, even for
dataset that is not used for training.
Fig. 4. COSMIC temperature measurements versus neural network predictions for
the months of April to September in year (a) 2018, and (b) 2020. The black lines are
best-fit straight lines for the data points.
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On the other hand, Eq. (7) shows an intercept of 3.3 �C on the
vertical (COSMIC) axis. Interestingly, the slope of the line, however,
is still 1.0. The implication is that: for the 2020 dataset, there is
typically about 3.3 �C difference between the COSMIC measure-
ments and the neural network predictions. Precisely, the difference
is tilted in favor of the COSMIC measurements; the COSMIC mea-
surements are typically greater than the neural network predic-
tions by about 3.3 �C. This is the first indication we get from our
work that the atmospheric temperatures did increase during the
2020 lockdown period, compared to modeling that is based on
pre-lockdown measurements.

It is important to emphasize that the 3.3 �C difference obtained
from the foregoing is based on all altitudes in the profiles from 0 to
40 km. In order to conduct an altitude-dependent investigation, we
first compute the differences as functions of altitude. Fig. 5a and b
indicate how the differences (computed as COSMIC measurements
minus neural network predictions) vary with altitude for the 2018
and 2020 datasets respectively. For reason of the high density of
points involved, the distribution density of the differences may
not be clearly evident. However, it is noticeable that the distribu-
tion of points in Fig. 5a appear to be centered at about 0 �C, but that
the distribution of points in Fig. 5b appear to be centered some-
where to the right of 0 �C. This is an indication that there are more
of the positive temperature differences than the negative ones in
Fig. 5b. To clearly demonstrate any skew in the distribution, we
computed the normalized distribution of the differences, shown
in Fig. 5c and d, for the 2018 and 2020 datasets respectively.
Fig. 5c reveals an almost perfect Gaussian distribution of the differ-
ences, which is centered on 0 �C. This means that the greatest
majority of the differences are 0 �C, and that there is a comparable
drop on both sides, moving away from 0 �C. The implication is that
the neural network predictions are in tune with the COSMIC mea-
surements. The scenario is however different in Fig. 5d where the
distribution curve is rather centered on 1 �C. There is also clearly
evident asymmetry in the shape of the curve; there is an enhanced
distribution of points to the right hand side, than to the left hand
side (see the lower parts of the curve, for instance). This gives a
general sense that the COSMICmeasurements during the lockdown
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are typically greater than the predicted values should there have
been no lockdown. For statistical confirmation, we compute the
means of ‘‘COSMIC measurements minus neural network predic-
tions”. The values are respectively 0.3 and 1.4 �C for the 2018
and 2020 dataset. By regarding the 2018 value of 0.3 �C as the
mean error associated with the neural network prediction, we esti-
mate that the lockdown may have caused the mean atmospheric
temperatures to increase by about 1.1 �C across altitudes 0 to
40 km.

To get further insight into the altitudinal distribution of the dif-
ferences, we put the temperature values in 1 km bins. For each bin,
we compute the means of ‘‘COSMIC measurements minus neural
network predictions” for each of the 2018 and 2020 dataset. By
regarding the 2018 values as the mean errors associated with the
neural network predictions, we estimate effect of the lockdown
on the 2020 temperatures by computing differences between the
2020 and 2018 values. The results are illustrated in Fig. 6a and in
Table 1. The figure and the table illustrate altitudinal variation of
the April to September 2020 mean temperature differences, with
the neural network mean prediction errors removed. Table 1 also
contains additional information on the standard, maximum, and
minimum deviations.

Fig. 6a clearly shows that the Mean Temperature Differences are
predominantly positive at the various altitudes, meaning that the
COSMIC measurements during the April to September 2020 lock-
down are greater than the anticipated values, should there have
been no lockdown. In essence, our research results show that the
lockdown predominantly gave rise to increased atmospheric tem-
peratures in the region. As an explanation, the enforced COVID-19
lockdown expectedly gave rise to reduction in societal activity,
leading to reductions in aerosol and precursor emissions (Pal
et al., 2021). The decrease in aerosols produces dimming of clouds
and reduced clear-sky scattering, and this leads to a net decrease in
absorption of radiation entering the Earth. The observed warming
could therefore be explained to be due to reduction in total anthro-
pogenic aerosol cooling through aerosol-cloud interactions
(Gettelman et al., 2021).

The temperature increments are less than 0.5 �C at most of the
altitudes, but get slightly above 1 �C at altitudes of 28 and 29 km.
Fig. 6. (a) Altitudinal variation of the Mean Temperature Differences for April to
September 2020, with the neural network mean prediction errors removed (The
neural network mean prediction errors are estimated using the Mean Temperature
Differences for April to September 2018), and (b) Altitudinal variation of the Mean
Temperatures, computed using dataset for the months of April to September 2018
and April to September 2020. The lengths of the error bars in (a) represent the
standard deviations of the differences between the predictions and measurements
at each altitude bin.
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The altitudinal profile in Fig. 6a shows that there are two peaks in
which the greatest temperature increments are observed. The main
peak occurred at an altitude of 28 km, while a secondary peak
occurred at an attitude of 5 km. Our investigations reveal that
these altitudes are similar to those in which we find maximum
concentrations of ozone in the two layers of atmospheric ozone.
For example, Wuebbles (2020) indicated that peak concentrations
of stratospheric ozone are found at altitudes from 26 to 28 km in
the tropics, where the present study is focused. In the same tropics
region, results from WMO (2010) show that there is a minor peak
of ozone concentration at about 5 km altitude in the troposphere.
These results indicate that our observations of the greatest temper-
ature increments at the two altitudes could be related with the
peak concentrations of ozone at those altitudes. Atmospheric
ozone is known to have two effects on temperature of the Earth;
it absorbs solar ultraviolet radiation which heats the stratosphere,
as well as absorbs infrared radiation emitted by the Earth’s surface
(Gore, 1992; Ali et al., 2017; Herndon and Whiteside, 2019). These
radiation absorptions heat up the atmosphere at the ozone
altitudes.

There are also some altitudes where decreases in temperatures
are observed. These are altitudes close to the Earth surface (0–
2 km), and altitudes of 17–20 km, which correspond to the tropo-
pause/lower altitudes of the stratosphere. Fig. 6b is used to show
that the 17–20 km altitudes correspond to the tropopause/lower
altitudes of the stratosphere. The figure contains plots of the mean
COSMIC temperature measurements in the region from April to
September 2018 and 2020. The plots indicate that mean value of
surface temperatures in the region is about 25 �C. The tempera-
tures decrease with altitude up to an altitude of 17 km, where
the mean temperature is about �80 �C. Thereafter the tempera-
tures increase to about �22 �C at 40 km altitude. The altitudinal
temperature profiles in Fig. 6b therefore indicate that the 17–
20 km altitudes (where negative Mean Temperature Differences
are recorded) correspond to the tropopause/lower altitudes of the
stratosphere.

A major influence on Land Surface Temperature (LST) is Anthro-
pogenic Heat Flux (AHF) (Nguyen et al., 2018; Liou et al., 2021; Yu
et al., 2021; Pal et al., 2021). This refers to heat release to the atmo-
sphere due to human activities like combustion of fossil fuel,
human metabolism, industrial emission, and traffic emission
(Zheng et al., 2021). Such human activities were reduced during
the COVID-19 lockdown, resulting in reduced AHFs, and therefore
reduced LSTs. We explain the observed temperature decreases
close to Earth surface to be due to reductions in the AHFs during
the lockdown. In an industrial Indian region, Pal et al. (2021) par-
ticularly observed that LSTs decreased by 5 �C during the lock-
down, and that there was a corresponding reduction in AHFs by
65.5%. Several other studies (e.g. Sahani et al., 2021; Guha and
Govil, 2021) have also demonstrated that LSTs decreased during
the COVID-19 lockdown as a result of reductions in AHFs.

Regarding the observed cooling at lower stratospheric altitudes
(17–20 km), some studies (e.g., Randel et al., 2017) have linked
cooling in the lower stratosphere to systematic circulation changes
in the troposphere-stratosphere boundary. Since the troposphere
and stratosphere are marked by differences in their composition
of the constituent elements, we suggest that changes in concentra-
tions of atmospheric constituents which occurred during the lock-
down may have induced some atmospheric constituent
circulations across the troposphere-stratosphere boundary, giving
rise to the observed cooling at the lower stratospheric altitudes.
More data on altitudinal variations of atmospheric constituents
will be required to investigate and present explanations on how
such circulations have lead to the observed lower stratospheric
cooling. This is suggested for future studies as it is not a focus for
the present study.



Table 1
Descriptive statistics of deviations from the predicted data for 2020 at each altitude bin.

Altitude bin (km) Number of data points Mean of deviations (�C) Standard deviation (�C) Maximum deviation (�C) Minimum deviation (�C)

0 4138 �0.3242 0.2558 12.4229 �6.1119
1 48,502 �0.1072 0.1954 11.9434 �10.7797
2 76,517 �0.0424 0.1688 7.3534 �15.4474
3 82,311 0.4244 0.0616 5.4326 �18.2513
4 83,445 0.4716 0.0278 4.2151 �14.8429
5 83,929 0.4830 0.0258 7.2173 �16.3855
6 84,199 0.4378 0.0256 8.0286 �23.8494
7 84,447 0.4220 0.0446 11.3130 �22.2388
8 84,604 0.2961 0.0577 12.0656 �16.5427
9 84,650 0.3359 0.0687 11.7419 �23.4429
10 84,908 0.3387 0.0662 5.9374 �21.1520
11 85,202 0.3404 0.0674 6.1556 �12.5038
12 85,294 0.3704 0.0448 5.1023 �11.6755
13 85,253 0.4007 0.0366 5.9365 �14.8355
14 85,387 0.3418 0.0269 6.4752 �20.1180
15 85,282 0.1751 0.0404 8.3166 �14.7361
16 85,150 0.0829 0.0671 9.1965 �6.2742
17 85,124 �0.0567 0.0615 10.9028 �10.4345
18 85,150 �0.2035 0.0635 10.9003 �11.5706
19 85,148 �0.2121 0.1207 9.8412 �11.6501
20 63,964 �0.0443 0.1124 15.5877 �16.4988
21 42,680 0.0847 0.1042 25.7949 �18.6594
22 42,677 0.2483 0.1443 26.4760 �17.9793
23 42,641 0.3232 0.1804 13.7926 �16.3900
24 42,589 0.3778 0.1397 15.6258 �16.7051
25 42,606 0.5107 0.1714 13.6259 �15.1819
26 42,612 0.6884 0.1958 11.6233 �12.2610
27 42,650 0.9298 0.1808 10.6497 �10.5470
28 42,663 1.1235 0.1575 10.6834 �12.1487
29 42,696 1.1072 0.2043 10.0025 �12.1736
30 42,734 0.9612 0.2611 9.1427 �10.3554
31 42,777 0.7421 0.3190 9.1357 �7.3389
32 42,782 0.4448 0.4034 9.1513 �7.0739
33 42,739 0.2670 0.4792 13.3676 �7.9136
34 42,717 0.2787 0.4750 14.1294 �8.3450
35 42,766 0.2997 0.4168 13.3286 �8.7921
36 42,737 0.3217 0.3184 12.6834 �9.5802
37 42,739 0.3616 0.2227 12.6574 �10.6971
38 42,733 0.3416 0.1634 11.1456 �11.8233
39 42,664 0.3404 0.1259 12.3863 �11.8506
40 42,649 0.3151 0.1081 14.1385 �11.3711
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Considering the concern that seasonal variation of the MAE
could impact our results, we have computed the MAE as functions
of the Day of Year (to illustrate seasonal variation) and altitude,
using the test dataset which was described earlier. The MAE result
Fig. 7. Seasonal variation of the Mean Absolute Error computed as a function of
altitude, using the test dataset.
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is illustrated in the MAE map of Fig. 7. The figure shows that sea-
sonal variability is not noticeable in the MAE values. To investigate
statistically, we first computed the monthly means of the altitudi-
nal MAE profiles, and created a matrix of 12 vectors (each vector
representing the monthly means of the altitudinal MAE profiles)
for the months of January to December. Then we performed Anal-
ysis of Variance (ANOVA) on the matrix. The analysis returned a p-
value of 0.2812 (which is greater than the 0.05 significance level),
implying that the differences between the means of the monthly
MAEs are not statistically significant. It is also for considerations
of possible seasonal variability in the MAE that we used dataset
of April to September 2018 (exactly same months/seasons as the
lockdown period) for control experiment purpose.
4. Conclusion

A new artificial intelligence based method was used to investi-
gate the effect of the April to September 2020 lockdown on 3-
dimensional atmospheric temperatures in Nigeria, equatorial
Africa. Artificial neural networks were used to learn trends/pat-
terns in 3-dimensional COSMIC temperature measurements, and
subsequently, the trained neural networks are used to predict the
expected temperature values for April to September 2020, should
there have been no lockdown. The effect of lockdown is deciphered
by comparing the neural network predictions with actual COSMIC
measurements during the lockdown.
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In overall, the results reveal that the mean altitudinal (0 to
40 km) temperatures rose by about 1.1 �C above the expected value
during the lockdown. The observed increase in mean altitudinal
atmospheric temperatures was linked to decrease in aerosols and
precursor emissions during the enforced lockdown, which gave
rise to a net decrease in absorption of radiation entering the Earth.

Further analysis at 1 km resolution reveals that the temperature
increments were less than 0.5 �C at most of the altitudes, and
slightly greater than 1 �C at altitudes of 28 and 29 km. Particularly,
two peaks of temperature increments were observed at altitudes of
28 km and 5 km. These altitudes are observed to be similar to those
in which maximum concentrations of ozone (in the stratospheric
and tropospheric ozone layers) have been detected in the region
of the present study.

The temperatures were also observed to drop below expected
values at altitudes close to the Earth surface (0–2 km), and at alti-
tudes of 17–20 km (which correspond to the tropopause/lower
altitudes of the stratosphere). Atmospheric cooling at altitudes
close to the ground was explained to be as a result of reduction
in anthropogenic heat fluxes due to the enforced lockdown. Cool-
ing at the lower stratospheric altitudes was suggested to be con-
nected with atmospheric constituent circulations across the
troposphere-stratosphere boundary.

There was also an investigation into the significance of the solar
activeness (represented by sunspot number) as an input for the
neural network training. The results show that including the sun-
spot number as input for the training did not improve prediction
accuracy of the networks, indicating that the solar activity does
not play a significant role in deciding the atmospheric
temperatures.
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