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Abstract
Within Enugu and Anambra States, Nigeria, identification of fishes has been based on morphological traits and do not 
account for existing biodiversity. For DNA barcoding, assessment of biodiversity, conservation and fishery management, 
44 fish sampled from Enugu and Anambra States were isolated, amplified and sequenced with mitochondrial cytochrome 
oxidase subunit I (COI). Twenty groups clustering at 100% bootstrap value including monophyletic ones were identified. 
The phylogenetic diversity (PD) ranged from 0.0397 (Synodontis obesus) to 0.2147 (Parachanna obscura). The highest per-
centage of genetic distance based on Kimura 2-parameter was 37.00 ± 0.0400. Intergeneric distances ranged from 15.8000 
to 37.0000%. Congeneric distances were 6.9000 ± 0.0140–28.1000 ± 0.0380, with Synodontis as the existing synonymous 
genus. Confamilial distances in percentage were 16.0000 ± 0.0140 and 25.7000 ± 0.0300. Forty-two haplotypes and hap-
lotype diversity of 0.9990 ± 0.0003 were detected. Nucleotide diversity was 0.7372, while Fu and Li’s D* test statistic was 
2.1743 (P < 0.02). Tajima’s D was 0.2424 (P > 0.10) and nucleotide frequencies were C (17.70%), T (29.40%), A (24.82%), 
G (18.04%) and A + T (54.22%). Transitional mutations were more than transversions. Twenty species (99–100%) were 
identified with the e-value, maximum coverage and bit-score of 1e−43, 99–100 and 185–1194, respectively. Seventeen 
genera and 12 families were found and Clariidae (n = 14) was the most dominant among other families. The fish species 
resolution, diversity assessment and phylogenetic relationships were successfully obtained with the COI marker. Clariidae 
had the highest number of genera and families. Phylogenetic diversity analysis identified Parachanna obscura as the most 
evolutionarily divergent one. This study will contribute to fishery management, and conservation of freshwater fishes in 
Enugu and Anambra States, Nigeria.
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Introduction

Fishes are vital aquatic animals of great diversity in morpho-
logical appearances and they are more than 35,000 species 
globally that contribute significantly to the existing verte-
brates (Zhang and Hanner 2012; Bingpeng et al. 2018). At 
a numeric basis, genuine scientific descriptions have been 
noted for more than 27,977 species of different fishes in 
approximately 62 orders and 515 families (Nelson 2006). 
These organisms play significant roles in income generation, 
protein and mineral dietary supplements for human utiliza-
tion as well as serving as major components of biodiversity 
(Ward et al. 2005; Rasmussen et al. 2009; Ugwumba and 
Ugwumba 2003). Fishes possess characteristics of remark-
able morphological features that pose great challenges in 
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identification using only descriptors from morphological 
and morphometric features (Triantafyllidis et  al. 2011; 
Zhang and Hanner 2011). Furthermore, characteristics of 
convergence and divergence in fishes are the resultant altera-
tions in the morpho-based features that lead to controversial 
classification, distinguishability and identification of fishes 
(Keskin and Atar 2013). Characterization, identification 
and assessment of biodiversity are the ingredients to fishery 
investigations and assessment of natural reserves (Ardura 
et al. 2013; Vartak et al. 2015). The challenges posed by the 
use of morpho-based identification procedure coupled with 
dwindling number of experienced taxonomists have neces-
sitated the use of an informative molecular method (Steinke 
et al. 2009). Unlike the morpho-based method that is faced 
with inaccuracy of identification due to existence of syn-
onymous external morphological features and variations at 
different developmental stages, DNA barcoding is free from 
these barriers and can accurately identify species and also 
discover cryptic ones (Bingpeng et al. 2018).

Proper identification of fishes which has been tradition-
ally based on morphological attributes requires a better, 
reliable, sensitive and affordable alternative to understand 
and obtain basic knowledge of fish identities and species 
biodiversity enrichment within given geographical loca-
tions. Identification of fishes using morphology-based 
approach poses a great challenge following high diversity 
in developmental stages and morphological plasticity (Vic-
tor et al. 2009). The DNA barcoding identification approach 
has been developed and noted to be potentially efficacious 
due to inherent characteristics of sensitivity, reproducibil-
ity, reliability and environmental friendliness (Zhang et al. 
2004; Comi et al. 2005; Teletchea 2009). This method, if 
well utilized, will eliminate existing misidentification and 
the availability of cryptic species that mimic and equally 
compromise the accuracy of fishes in research, fishery man-
agement and conservation (Vecchione et al. 2000; Bortolus 
2008). Number of countries including Australia (Ward et al. 
2005); Antarctic Scotia Sea (Rock et al. 2008); Alaska and 
Pacific Arctic (Mecklenburg et al. 2011); Canada (Hubert 
et al. 2008); Mexico and Guatemala (Valdez-Moreno et al. 
2009); Amazon (Ardura et al. 2010); India (Lakra et al. 
2011); North America (Aprila et al. 2011); Eastern Nige-
ria covering only Ebonyi and Anambra States (Nwani et al. 
2011) and Japan (Zhang and Hanner 2011) have had DNA 
barcoding done on some of the fish species sourced from 
freshwater, sea and marine. Nigeria is a country of above 
170 million people with abundant water bodies for fishery. 
Nigerian fishes need to be studied for adequate knowledge of 
genetic diversity and possible identification of new species, 
especially in Enugu and Anambra States that harbor many 
freshwater bodies. Application of informative molecular 
markers will provide information on the molecular struc-
ture of fish species that will be useful in identification of 

unique stocks, stock enhancement, breeding programs for 
sustainable yield and preservation of genetic diversity (Tri-
pathi 2011; Dinesh et al. 1993). For high discriminatory 
role in fish species from different sources of water, DNA 
barcoding has been well adjudged including some cryptic 
ones (Hubert et al. 2008; Carvalho et al. 2011; Pereira et al. 
2013; Benzaquem et al. 2015).

Use of COI in DNA barcoding within animal kingdom 
has become a marker of choice (Hebert et al. 2003). It 
has been extensively applied for identification of inva-
sive species (Wilson-Wilde et al. 2010), food adultera-
tion analysis (Cohen et al. 2009; Murugaiah et al. 2009; 
Rojas et al. 2010), in forensic cases (Eaton et al. 2009), 
ecological discrimination (Berry et al. 2017), biomaterial 
collections (Cooper et al. 2007) and evaluation and docu-
mentation of new species through the use of phylogenetic 
diversity (PD) (the summation of the phylogenetic tree 
lengths of all the branches that are members of the cor-
responding minimum spanning routes for assessing ances-
tral relationships and conservation) (Faith 1992, 2008). 
This DNA barcoding technique has also been utilized in 
the identification of different organisms to their respec-
tive species levels as reported in nematodes (Elsasser 
et al. 2009), fish parasites (Locke et al. 2010), bats (Clare 
et al. 2007), mosquitoes (Cywinska et al. 2006), fungi 
(Stockinger et al. 2010), earthworms (Chang et al. 2008), 
bacteria (Sogin et al. 2006), protists (Chantangsi et al. 
2007), spiders (Barret and Hebert 2005), fish (Ward 
et al. 2005) and crustaceans (Costa et al. 2007). DNA 
barcoding has become universally important both in ani-
mal and plant organisms but plants use chloroplast loci 
genes (matK, rbcL, rpoB and rpoC1) targeting coding 
regions and nuclear genes (ITS) (Baldwin and Markos 
1998; Mort et al. 2007; Dong et al. 2012), while COI is 
applied in DNA barcoding of animals due to hyper muta-
tion, maternal inheritance, absence of introns, absence 
of recombination, high substitution rates and lack of fast 
nucleotide substitution within the mitochondrial genome 
where the marker is located (Ballard and Whitlock 2004; 
Ballard and Rand 2005; Nabholz et al. 2009; Bernt et al. 
2013; Hoque et al. 2013). It  is a useful tool in differ-
ent biological studies and has been used by the Barcode 
of life data Systems (BOLD) as a potential approach for 
identification of fishes to the species level (Ward et al. 
2005; Wong and Hanner 2008). Within the eastern zone 
of Nigeria, especially, Enugu and Anambra States that 
maintain abundant freshwater bodies, identification and 
classification of fish have been based on morphological 
traits which are prone to errors. Also, there is no record 
of existing biodiversity of fishes within these States due 
to the use of only a morpho-based method. Application 
of modern and informative molecular technique includ-
ing DNA barcoding has become necessary to address the 



645Conservation Genetics Resources (2020) 12:643–658 

1 3

challenges of inappropriate identification. Therefore, we 
investigated the utility of COI marker gene for species 
identification and assessment of genetic diversity within 
and among fish species collected from different freshwa-
ter bodies in Enugu and Anambra States of Nigeria.

Methods

Sample collection

Forty-four (44) fish samples were collected from different 
locations in Enugu and Anambra States of Nigeria (Fig. 1; 
Table 1). The freshwater bodies that were easily acces-
sible in the two States included the locations of Nike, 
Ugwuonwu, Ezu, and Obinna’s farm cutting across dif-
ferent lakes and rivers. Twelve (12), 17, 13, and 2 fishes 
were respectively collected from Nike Lake, Ugwuonwu 
Lake, Ezu River, and Obinna’s farm through local farm-
ers who caught the fishes with fishing nets. The collected 
samples (the cut caudal fin or muscle part from whole 
fish species already caught by the local farmers) were 
preserved in 75% ethanol prior to DNA extraction. 

DNA extraction

DNA was extracted following the method of Marizzi et al. 
(2018) with modifications. Briefly, a tissue (caudal fin or 
muscle) of 0.01 to 0.015 g was cut from each of the ethanol-
preserved fish samples and transferred to a sterile 1.5 mL 
microcentrifuge with addition of 300 μL of lysis solution 
for homogenization using sterile mortar and pestle. The 
mixture was incubated in a heat block at 65 °C for 10 min. 
Next, samples were centrifuged in a balanced configura-
tion at maximum speed (13,000 rev/min) for 1 min to pellet 
debris followed by transfer of 150 μL of supernatant into 
new 1.5 mL microcentrifuge tube with care not to disturb the 
pellet debris. The mixture was well mixed after addition of 
3 μL silica resin followed by incubation at 57 °C for 5 min 
and centrifugation at maximum speed for 30 s to pellet the 
resin. The supernatant was transferred to new 1.5 mL with 
addition of 500 μL ice cold wash buffer to the pellet followed 
by centrifugation at maximum speed for 30 s. After this, the 
supernatant was transferred with the addition of 500 μL of 
ice-cold wash buffer, thorough mixture by vortexing, resus-
pension of the silica resin and centrifugation at maximum 
speed for 30 s. The wash buffer removes contaminants from 
the samples while nucleic acids remain bound to the resin. 
A dry spin step after wash was performed to remove any 

Fig. 1  Maps of Enugu (a) and Anambra (b) States showing locations of rivers and lakes used for collection of fish samples
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remnant drops of supernatant with a micropipette. Finally, 
100 μL of distilled water was added to the silica resin, mixed 
well by vortexing and incubated at 57 °C for 5 min. Samples 
were then centrifuged for 30 s at maximum speed to pellet 

the resin. Later, 90 μL of the supernatant was transferred 
to new tubes from the resin. The eluted DNA was stored at 
− 20 °C prior to PCR step. The extracted was verified by 
loading 2 μL on 1.0% agarose gel electrophoresis.

Table 1  List of different fish 
species, English name and their 
sources used for this study

Local name = Igbo name only

Sample name Fish source Common name Local name

Tilapia1 Nike Lake Tilapia Ikpokpo
Trunkfish2 Nike Lake Buffalo Obuu
Dogfish4 Nike Lake Dogfish Ogazingu
AfricanCat5 Nike Lake Catfish Alila
ObscueSH6 Nike Lake Sleeping fish Evi
NileTilapia9 Nike Lake Tilapia Ikpokpo
Catfish10 Nike Lake Catfish Alila
Catfish11 Nike Lake Catfish Alila
Catfish12 Nike Lake Catfish Alila
ElectricF13 Ugwuomu Lake Electric fish Elulu/Ntuji
Catfish14 Ugwuomu Lake Catfish Alila
Catfish17 Ugwuomu Lake Catfish Alila
Catfish18 Ugwuomu Lake Catfish Alila
Catfish19 Ugwuomu Lake Catfish Alila
Catfish20 Ugwuomu Lake Catfish Alila
Catfish21 Ugwuomu Lake Catfish Alila
UpDoCat22 Ugwuomu Lake Upside down catfish Okpuu (Igagu)
UpDoCat23 Ugwuomu Lake Upside down catfish Okpuu (Nchaba)
CoastalUD24 Ugwuomu Lake Upside down catfish Okpuu (Mmanu)
UpDoCat25 Ugwuomu Lake Upside down catfish Okpuu
UpDoCat26 Ugwuomu Lake Upside down catfish Okpuu
UpDoCat27 Ugwuomu Lake Upside down catfish Okpuu
Dogfish28 Nike Lake Dogfish Ogazingu/Nkuta Azu
Tilapia29 Nike Lake Tilapia Ikpokpo
Dogfish30 Nike Lake Dogfish Ogazingu/Nkuta Azu
UpDoCat37 Ugwuomu Lake Upside down catfish Okpuu (Igagu) Noise
UpDoCat38 Ugwuomu Lake Upside down catfish Okpuu
Catfish46 Ugwuomu Lake Catfish Alila
Dogfish47 Ugwuomu Lake Dog fish Ogazingu/Nkuta Azu
MoonFish55 Ezu River Moon fish Aghali
Trunkfish56 Ezu River Trunk fish Obu
AfricanKnF60 Ezu River African knife fish Uchulu (Akarakara)
GrassEater72 Ezu River Grass eater fish Ejo
AfricanJeF73 Ezu River African jewelfish Anyamme
Cichlid74 Ezu River Damselfish Ikputu
AfricanButCf76 Ezu River African Butterfly fish Adaala
Tilapia77 Ezu River Tilapia Onyeoma
UpDoCat79 Ezu River Upside down catfish Okpuu (Isinkita)
RedTailedSy81 Ezu River Red Tailed fish Okpuu (Elo)
WiheadCf83 Ezu River Wide head fish Okpuu (Utu)
Dogfish84 Ezu River Dogfish Ogazingu
Catfish87 Ezu River Catfish Alila
CfHybrid90 Obinna’s Farm Tropical catfish (hybrid) Alila
TropCfish91 Obinna’s Farm Tropical catfish Alila
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Polymerase chain reaction and agarose gel 
electrophoresis and DNA sequencing

Polymerase chain reaction (PCR) amplification was per-
formed in Ready-To-Go PCR beads in a total volume of 
25 µL which consisted of 2 µL of ~ 100 ng DNA and 23 
µL of primer/loading dye mix for fish cocktail with pairs 
of mitochondrial cytochrome oxidase I [(COI) primers for-
ward primer, VF2_t1: 5′-TGT AAA ACG ACG GCC AGT CAA 
CCA ACC ACA AAG ACA TTG GCA C-3′; forward primer, 
FishF2_t1: 5′-TGT AAA ACG ACG GCC AGT CGA CTA ATC 
ATA AAG ATA TCG GCA C-3′; Reverse primer, FishR2_t1: 
5′-CAG GAA ACA GCT AGT ACA CTT CAG GGT GAC CGA 
AGA ATC AGA A-3′ and reverse primer, FR1d_t1: 5′-CAG 
GAA ACA GCT ATG ACA CCT CAG GGT GTC CGA ARA 
AYC ARA A-3′]. The PCR tubes were placed in a thermal 
cycler that had been programmed with the appropriate PCR 
protocol with initial step at 94 °C for 1 min., 35 cycles of 
94 °C for 15 s, 54 °C for 15 s, and 72 °C for 30 s., and 8 min 
final extension at 72 °C was maintained. The PCR prod-
ucts or amplicons were electrophoresed on 1.5% agarose gel 
containing 0.5 mg/mL ethidium bromide and photographed 
using UV Transilluminator light (Omega G) to ensure that 
the PCR was successful and yielded accurate amplicon size. 
The generated PCR amplicons were prepared and sent to 
Genewiz LLC, New Jersey, USA, for DNA sequencing. 
To avoid issues relating to sequencing error, bidirectional 
sequencing coverage was performed for each sample and 
also sequenced twice.

Data analyses

A total of 44 sequences out of the 92 samples collected, 
were validated and used for analyses. The sequencing 
results generated from the Applied Biosystems Genetic 
automated sequencer were carefully trimmed, edited, fil-
tered and assembled using DNA Subway (Merchant et al. 
2016). Sequences were translated to amino acids and exam-
ined for stop codons to ensure there was no pseudogene 
amplification. Also, multiple and pairwise alignments were 
done using the ClustalW in BioEdit (Hall 1999; Bousalem 
et al. 2000; Chenna et al. 2003). The aligned sequences 
were subjected to phylogenetic trees reconstruction using 
Maximum Likelihood (ML) and Kimura 2-parameter (K2P) 
(Kimura 1980) and p-distance procedures with bootstrap 
test of 1000 replicates (Felsenstein 1981; Nei and Kumar 
2000). The tree was drawn to scale, with branch lengths 
in the same units as those of the genetic distances used to 
construct the phylogenetic tree with a sequence of Pentalo-
nia nigronervosa as an outgroup. Codon positions included 
were 1st + 2nd + 3rd + Noncoding. All positions with less 
than 95% site coverage were eliminated. Also, phylogenetic 
diversity (PD), a measure of the relative feature diversity of 

different subsets of taxa from a phylogeny and supports the 
broad goal of biodiversity, conservation and evolutionary 
heritage (Faith 2015), was computed using Molecular evolu-
tionary genetic analysis version X (MEGA X) (Kumar et al. 
2018). Genetic diversity distances based on K2P were also 
analysed to obtain intergeneric, congeneric and confamilial 
genetic distances using MEGA X. Other parameters includ-
ing haplotype, Fu and Li’s D* test statistics and Tajima’s D 
analyses were computed using DnaSP version 5.10.01 (Lib-
rado and Rozas 2009). Tajima’s D statistics were applied 
to calculate the neutrality of haplotype. The statistics use 
the nucleotide diversity (π) and the number of segregating 
sites (S) observed in a sample of DNA sequences to make 
two estimates of the scaled mutation rate, θ (S) and θ (π). 
Tajima’s statistics D < 0 (θ (π) < θ (S) indicates populations 
that had experienced recent bottleneck effect. Multiple and 
pairwise alignments for detection of transitions and transver-
sions were done using ClustalW in BioEdit software (Hall 
1999; Bousalem et al. 2000; Chenna et al. 2003). Percentage 
similarity searches were compared with GenBank databases 
using BLASTn option in NCBI web-based site.

Results

Phylogenetic reconstruction

Phylogenetic reconstruction had a branch length of 1.9896 
and percentage replicate trees in which the associated 
sequences clustered together in the bootstrap test of 1000 
replicates were shown next to the branches with 658 posi-
tions in the final dataset (Fig. 2). Twenty major groups were 
identified with each species clustering at 100% bootstrap 
value followed by an outgroup that was included to ensure 
accurate and distinct grouping. Group I consisted of upside-
down catfish including UpDoCat22, UpDoCat23, Coasta-
lUD24, UpDoCat25, UpDoCat26, UpDoCat27, UpDoCat37 
and UpDoCat38. This group had species of fish with 100% 
bootstrap replications but monophyletic (a group contain-
ing the most common ancestor of a given set of sequence 
taxa and all the descendants of that most recent common 
ancestor) at a subclade of 74% and clustered with Synodontis 
obesus. Group II had only RedTailedSy81 that was clearly 
grouped with a reference sequence of Synodontis clarias at 
its bootstrap replication of 100%. Groups III, IV and V had 
AfricanButCf76, WiheadCf83 and UpDoCat79 with their 
respective reference sequences of Schilbe mystus, Clarote 
laticeps and Auchenoglanis occidentalis. Each had bootstrap 
replications of 100%. Group VI had seven fishes including 
Catfish12, Catfish14, Catfish17, Catfish18, Catfish19, Cat-
fish20, and Catfish21, clustering with Clarias gabonen-
sis at 100% with different subclades of 16%, 63%, 81 and 
85%. Group VII also clustered seven fish sequences from 
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Fig. 2  Phylogenetic reconstruction of 44 fish COI sequences using Maximum Likelihood (ML) method. Gp group
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AfricanCat5, Catfish10, Catfish11, Catfish46, Catfish87, 
CfHybrid90, and TropCfish91, with Clarias gariepinus 
x batrachus and C. gariepinus as reference sequences at 
100% bootstrap value. Groups VIII and IX at 100%, con-
tained ElectricF13 and NileTilapia9, clustering together with 
Malapterurus electricus and Oreochromis aureus, respec-
tively. Groups X, XI and XII with a bootstrap value of 100%, 
had Tilapia29, Cichlid74 and AfricanJeF73, with respective 
reference sequences of Tilapia guineensis, Chromidotilapia 
guntheri and Hemichromis letourneuxi. Group XIII had two 
fishes (Tilapia1 and Tilapia77), clustering with Hemichromis 
fasciatus at a replication value of 100%. Also, groups XIV, 
XV and XVI with 100% bootstraps contained Trunkfish2, 
Trunkfish56 and AfricanKnF60 that grouped together with 
their respective reference sequences of Mormrus tapirus, 
Marcusenius cyprinoides and Xenomystus nigri. In group 
XVII, five sequences clustered with Hepsetus odoe in which 
Dogfish84 had 100% replication value, while others such as 
Dogfish4, Dogfish28, Dogfish30 and Dogfish47 produced 
a subclade of 85%. Also, groups XVIII, XIX and XX con-
tained ObscureSH6, MoonFish55 and GrassEater72, with 
each having Parachanna obscura, Citharinus sp and Dis-
tichodus rostratus as respective reference sequences.

Phylogenetic diversity

Phylogenetic diversity of each group without its respec-
tive reference sequences were computed (Fig. 3). The PD 
ranged from 0.0397 (group I) to 0.2147 (group XVIII). 
Group I consisted of UpDoCat22, UpDoCat23, Coasta-
lUD24, UpDoCat25, UpDoCat, UpDoCat27, UpDoCat37 
and UpDoCat38, with a PD value of 0.0397. In group II, 
only RedTailedSy81 was detected with 0.0397. Groups 
III, IV and V comprised of AfricanButCf76, WiheadCf83 
and UpDoCat79, with PD values of 0.1089, 0.1058 and 
0.1276, respectively. Group VI consisted of seven fish 
sequences including Catfish12, Catfish14, Catfish17, 
Catfish18, Catfish19, Catfish20, and Catfish21 at 0.0661. 
Group VII further clustered seven sequences (AfricanCat5, 
Catfish10, Catfish11, Catfish46, Catfish87, CfHybrid90, 
and TropCfish91) that were resolved at a PD value of 
0.0628. At 0.13544, ElectricF13 clustered in group VIII, 
while Tilapia29 and NileTilapia9 clustered in groups 
IX and X maintaining a similar PD value of 0.0812. In 
groups XI and XII, Cichlid74 and AfricanJeF73 produced 
0.1053, and 0.1169, respectively. In group XIII, Tilapia1 
and Tilapia77 had the same value of 0.1053. Groups XIV 
and XV consisted of Trunkfish2, and Trunkfish56 with 
the same PD value of 0.1426, while group XVI had Afri-
canKnF60 with 0.1679. In group XVII, five fishes (Dog-
fish4, Dogfish28, Dogfish30, Dogfish47 and Dogfish84) 
had a PD value of 0.1649. Also, groups XIX and XX had 
MoonFish55 and GrassEater72, with a synonymous PD 

value of 0.1393, while ObscureSH6 in XVIII had 0.2147. 
Some of the groups contained similar PD values. For 
instance, groups I and II had a synonymous PD value of 
0.0397, where group I contained Synodontis obesus and 
Synodontis clarias in group II. In groups IX (Oreochromis 
aureus) and X (Tilapia guineensis), a PD value of 0.0812 
was common to the two groups of species. Phylogenetic 
diversity value of 0.1053 was identified in groups XI and 
XIII with Chromidotilapia guntheri and Hemichromis 
fasciatus, respectively. Groups XIV (Mormyrus tapirus) 
and XV (Marcusenius cyprinoides) had a similar value of 
0.1426, while groups XIX and XX yielded 0.1393. The 
two groups, XIX and XX, contained Citharinus sp. and 
Distichodus rostratus, respectively.

Genetic diversity distances based on Kimura 
2‑parameter

The highest genetic distances between species computed 
based on K2P was identified to be 37.00% (standard 
error, SE = 0.040) between groups 12 and 18 (Additional 
Table  S1). Intergeneric genetic distances ranged from 
15.800% to 37.00%. The highest intergeneric genetic diver-
gence (37.00%) was detected between Hemichromis and 
Parachanna (groups 12 and 18), while the lowest value 
(15.80%) was between Synodontis and Schilbe (groups 
2 and 3). For the congeneric distances, the values ranged 
from 6.9 ± 0.014 (groups 1 and 2) to 28.1 ± 0.038 (groups 
1 and 13) with Synodontis as the existing genus (Table 2). 
Among the groups having the same genus, there were vari-
ations in their respective congeneric genetic distances. For 
instance, groups 1 and 12 had the same genus, Synodontis 
but the congeneric distance of 26.10 ± 0.030 was higher than 
the one (6.90 ± 0.014) obtained from groups 1 and 2 but 
lower than 28.10 ± 0.032 that was generated from groups 
1 and 13. Groups 6 and 7 that had a synonymous genus of 
Clarias yielded 11.9 ± 0.019, while 12 and 13 possessing 
Hemichromis as genus produced 18.60 ± 0.025 as conge-
neric genetic distance. For confamilial genetic distances in 
percentages, the values ranged from 16.00 ± 0.014 (groups 
9 and 10) to 25.7 ± 0.031 (groups 2 and 10) (Table 3). Each 
of the combined groups had different indices as confamil-
ial genetic distance. Differently combined groups based on 
their synonymous family of Cichlidae had variable values. 
For instance, combined groups of 1, 2, 9, 10, 11, 12 and 13 
containing the same family of Cichlidae, the highest confa-
milial value was identified in groups 2 and 10. Groups 4 and 
5 had a synonymous family of Claroteidae with a confamilial 
genetic distance of 21.90 ± 0.027, while groups 14 and 15 
possessed Mormyridae and 23.00 ± 0.030, respectively as 
family and confamilial distance. Mean diversity in entire 
population was 22.7 ± 0.019. 
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Fig. 3  Phylogenetic diversity of 44 fish COI sequences using the Maximum Likelihood (ML) method without reference sequences from NCBI 
database. Gp group
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Haplotype analysis and nucleotide frequencies

A total of 42 haplotypes, H, with haplotype (gene) diversity, 
Hd of 0.999 ± 0.00003, and 115 mutations were identified 
among the sequences. Only two sequences (Catfish18 and 
Catfish21) were found in haplotype 13 (Hap_13), while the 
remaining sequences had a separate haplotype. Also, 389, 
0.73721 and 286.776 were detected as parsimony informa-
tive sites, nucleotide diversity, Pi, and average number of 
pairwise nucleotide difference, K, respectively. Fu and Li’s 

D* test statistic was 2.17427 and it was found statistically 
significant (P < 0.02). Computation of Fu and Li’s F* test 
statistic yielded 1.7450 and was statistically determined 
(P < 0.005). Also, Tajima’s D of 0.2424 was identified but 
not statistically significant at P > 0.10.

In the present study, the COI amplified DNA fragments 
generated sequences with no presence of insertions, dele-
tions or stop codons. Also, there was no identification of 
nuclear DNA sequences originating from mitochondrial DNA 
sequences. Average nucleotide frequencies detected were C 

Table 2  Kimura 2-parameter 
(K2P) distances with 
standard errors obtained from 
computations of congeneric 
genetic distances of fish species

Group 1 = (Synodontis obesus: UpDoCat22, UpDoCat23, CoastalUD24, UpDoCat25, UpDoCat26, 
UpDoCat27, UpDoCat37, UpDoCat38), group 2 = (Synodontis clarias (Mandi): RedTailedSy81), group 
6 = (Clarias gabonensis: Catfish12, Catfish14, Catfish17, Catfish18, Catfish19, Catfish20, Catfish21), 
group 7 = (Clarias garipinus x batrachus: AfricanCat5, Catfish10, Catfish11, Catfish46, Catfish87, CfHy-
brid90, TropCfish91), group 12 = (Hemichromis letourneuxi: AfricanJeF73), group 13 = (Hemichromis fas-
ciatus: Tilapia1, Tilapia77)

Species 1 Species 2 Genus species 1/Genus species 2 K2P distance (%) Standard error

Group 1 Group 2 Synodontis/Synodontis 6.900 0.014
Group 1 Group 12 Synodontis/Synodontis 26.100 0.030
Group 1 Group 13 Synodontis/Synodontis 28.100 0.032
Group 6 Group 7 Clarias/Clarias 11.900 0.019
Group 12 Group 13 Hemichromis/Hemichromis 18.600 0.025

Table 3  Kimura 2-parameter 
(K2P) distances with 
standard error obtained from 
computations of confamiliar 
genetic distances of fish species

Group 1 = (Synodontis obesus: UpDoCat22, UpDoCat23, CoastalUD24, UpDoCat25, UpDoCatf26, 
UpDoCat27, UpDoCat37, UpDoCat38), group 2 = (Synodontis clarias (Mandi): RedTailedSy81), group 
4 = (Clarotes laticeps: 83_WiheadCf83), group 5 = (Auchenoglanis occidentalis: UpDoCat79), group 
9 = (Oreochromis aureus: NileTilapia9), group 10 = (Tilapia guineensis: Tilapia29), group 11 = (Chromi-
dotilapia guntheri: Cichlid74), group 12 = (Hemichromis letourneuxi: AfricanJeF73), group 13 = ( Hemi-
chromis fasciatus: Tilapia1, Tilapia77), group 14 = (Mormyrus tapirus: Trunkfish2), group 15 = (Marcuse-
nius cyprinoides: Trunkfish56)

Species 1 Species 2 Family species 1/Family species 2 K2P distance (%) Standard error

Group 1 Group 9 Cichlidae/Cichlidae 24.000 0.031
Group 1 Group 10 Cichlidae/Cichlidae 24.900 0.031
Group 1 Group 11 Cichlidae/Cichlidae 24.500 0.030
Group 2 Group 9 Cichlidae/Cichlidae 25.300 0.030
Group 2 Group 10 Cichlidae/Cichlidae 25.700 0.031
Group 2 Group 11 Cichlidae/Cichlidae 22.900 0.028
Group 2 Group 12 Cichlidae/Cichlidae 25.200 0.029
Group 2 Group 13 Cichlidae/Cichlidae 25.500 0.029
Group 4 Group 5 Claroteidae/Claroteidae 21.900 0.027
Group 9 Group 10 Cichlidae/Cichlidae 16.000 0.024
Group 9 Group 11 Cichlidae/Cichlidae 20.800 0.027
Group 9 Group 12 Cichlidae/Cichlidae 22.200 0.028
Group 9 Group 13 Cichlidae/Cichlidae 21.900 0.027
Group 10 Group 11 Cichlidae/Cichlidae 21.400 0.028
Group 10 Group 12 Cichlidae/Cichlidae 22.500 0.029
Group 10 Group 13 Cichlidae/Cichlidae 20.600 0.027
Group 11 Group 12 Cichlidae/Cichlidae 21.900 0.028
Group 11 Group 13 Cichlidae/Cichlidae 17.000 0.023
Group 14 Group 15 Mormyridae/Mormyridae 23.000 0.030
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(17.70%), T (29.40%), A (24.82%), and G (18.04%) with 
54.22% of A + T.

Generated fish sequence alignments 
for identification of variable sites

From the sequence alignments, there were genetic variations 
at a nucleotide level as determined at different consensus posi-
tions of the representative sequences (Additional file Fig. S1). 
Almost all the fish sequences are diverse and polymorphic at 
different consensus positions with transitional mutations (C/T, 
A/G) demonstrating abundance in occurrence compared to 
transversional types (G/C, A/T, G/T). For instance, transitions 
occurred at consensus positions of 251 (C/T), 254 (C/T), 257 
(A/G), 260 (C/T), 263 (C/T), 266 (A/G), 270 (C/T), 284 (C/T), 
288 (C/T), and 294 (C/T), while transversions were identified 
at positions 245 (A/C), 269 (A/C) and 290 (C/G), respectively.

BLAST analysis

BLAST results demonstrated different species of fish inher-
ent in the samples sequenced. A total of twenty species of 
fish (Hemichromis fasciatus, Mormyrus tapirus, Hepsetus 
odoe, Clarias gariepinus, Parachanna obscura, Oreo-
chromis aureus, Clarias gabonensis, Malapterurus elec-
tricus, Synodontis obesus, Talapia guineensis, Citharinus 
sp., Marcusenius cyprinoides, Xenomystus nigri, Disticho-
dus rostratus, Hemichromis letourneuxi, Chromidotilapia 
guntheri, Schilbe mystus, Auchenoglanis occidentalis, Syn-
odontis clarias, Clarotes laticeps) and a hybrid species of 
Clarias gariepinus x Clarias batrachus were identified with 
percentage identity ranging from 99 to 100% across the fish 
sequences (Table 4). The expected value, e-value, maximum 
coverage and bit score obtained from the sequences ranged 
from 1e−43, 99–100 and 185–1194, respectively. A total 
of twelve families (Cichlidae, Mormyridae, Hepsetidae, 
Channidae, Malapteruridae, Cichlidae, Citharininae, Mor-
myridae, Notopteridae, Distichodontidae, Schilbeidae and 
Claroteidae) were also detected among the fish samples. The 
highest number of families identified was Clariidae (num-
ber, n = 14), followed by Cichlidae (n = 9), Cichlidae (n = 6), 
Hepsetidae (n = 5), Clarotidae (n = 2), Mormyridae (n = 2), 
while the smallest in number that had one family each 
were Channidae, Malapteruridae, Schilbidae, Citharininae, 
Notopteridae and Distichondontidae. For the total number 
of genera, 17 of them were found among the fish sequences.

Discussion

Use of DNA barcoding approach with COI gene for species 
identification has been well acknowledged and documented 
especially in fishery (Kochzius et al. 2010; Ward 2012; 

Knebelsberger et al. 2014). The utility of DNA barcoding 
was demonstrated to be efficient in species identification due 
to 100% success rate recorded in this study and this corrobo-
rates with other reports on DNA barcoding of fishes (Lakra 
et al. 2015; Shen et al. 2016). Other studies revealed success 
rates from 90 to 95.60% (Hubert et al. 2008; April et al. 
2011; Iyiola et al. 2018). The different species clustered into 
12 groups at 100% bootstrap value, thereby, demonstrating 
the unambiguous resolution and diagnostic utility of COI 
gene as earlier reported (Shen et al. 2016; Persis et al. 2009). 
The congeneric and confamilial species were well resolved 
by the phylogeny. Ward et al. (2009) had earlier pointed out 
that the COI gene delineates boundaries of different spe-
cies, and that there was an indication of distinct phylogeny 
resolution in COI sequences that was linked to the cluster-
ing of congeneric and confamilial species. Generally, all the 
sequences pertaining to all species were correctly grouped 
together, thereby, demonstrating the potential of COI gene 
in DNA barcoding for fishery identification and manage-
ment (Tripathi 2011). Some of the identified fish species in 
our study have been previously reported in Nigeria (Nwani 
et al. 2011; Persis et al. 2009; Nwakanma et al. 2015; Falade 
et al. 2016).

Phylogenetic diversity, which assesses community phy-
logenetic richness, is obtainable through the summation 
of the lengths of tree branch lengths or distances that are 
members of the corresponding minimum traversing species 
or the sum of branch lengths of the evolutionary trees con-
necting a set of taxa or individuals, is a crucial diversity 
index (Faith 1992; Faith and Baker 2006). Applying rbcL 
DNA barcoding marker, comparison of species abundance 
for preservation of feature diversity through the use of PD 
has been documented in plants (Forest et al 2007) and also in 
the ecology of species to measure their richness using COI 
gene (Smith and Fisher 2009; Smith et al. 2009; Machac 
et al. 2011). In the present study, PD ranged from 0.0397 
(Synodontis obesus) to 0.2147 (Parachanna obscura). 
Some of the tree branches of the fish species had similar 
values of PD, while some yielded variable values. There 
were different groups of fish species that exhibited identical 
values of PD (Synodontis obesus and Synodontis clarias, 
PD = 0.0397; Oreochromis aureus and Tilapia guineensis, 
PD = 0.0812; Chromidotilapia guntheri and Hemichromis 
fasciatus, PD = 0.1053; Mormyrus tapirus and Marcusenius 
cyprinoides, PD = 0.1426; Citharinus sp and Distichodus 
rostratus, PD = 0.1393), while other groups yielded vari-
able values. This further illustrates the efficacy of this COI 
marker gene in distinguishing species and identifying relat-
edness based on their ancestral lineages. In mammals, the 
PD has been shown to be unevenly distributed across the 
globe (Davies et al. 2008; Schipper et al. 2008), and that 
hotspots of species richness might capture more PD than 
expected by chance (Sechrest et al. 2002; Spathelf and Waite 
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Table 4  BLAST analysis of fish obtained from COI barcoding marker, their NCBI hits, product size, accession number, maximum score, query 
cover and percentage identity

Sequence name BLAST hits in NCBI 
database

bp size Accession number Bit score Query cover E-value % Identity Family

Tilapia1 Hemichromis fasciatus 651 HM882925 819 100 0 100 Cichlidae
Trunkfish2 Mormyrus tapirus 651 HM882737 1129 100 0 100 Mormyridae
Dogfish4 Hepsetus odoe (African pike 

characin)
658 JF800936 1333 100 0 99 Hepsetidae

AfricanCat5 Clarias gariepinus (North 
African catfish)

651 HM882820 1182 100 0 99 Clariidae

ObscueSH6 Parachanna obscura 651 HM882957 1177 100 0 100 Channidae
NileTilapia9 Oreochromis aureus 685 KU565852 977 100 0 100 Cichlidae
Catfish10 Clarias gariepinus (North 

African catfish)
651 HM882821 713 100 0 99 Clariidae

Catfish11 Clarias gariepinus (North 
African catfish)

651 HM882820 998 100 0 100 Clariidae

Catfish12 Clarias gabonensis 651 HM882836 957 100 0 99 Clariidae
ElectricF13 Malapterurus electricus 

(electric catfish)
650 AP012016 1168 100 0 99 Malapteruridae

Catfish14 Clarias gabonensis 651 HM882815 1123 100 0 99 Clariidae
Catfish17 Clarias gabonensis 651 HM882836 1068 100 0 100 Clariidae
Catfish18 Clarias gabonensis 651 HM882815 1053 100 0 100 Clariidae
Catfish19 Clarias gabonensis 651 HM882815 1024 100 0 100 Clariidae
Catfish20 Clarias gabonensis 651 HM882815 909 100 0 99 Clariidae
Catfish21 Clarias gabonensis 651 HM882815 1048 100 0 100 Clariidae
UpDoCat22 Synodontis obesus 677 HF565926 1190 100 0 99 Cichlidae
UpDoCat23 Synodontis obesus 677 HF565926 1158 100 0 99 Cichlidae
CoastalUD24 Synodontis obesus 677 HF565926 1182 100 0 99 Cichlidae
UpDoCat25 Synodontis obesus 677 HF565926 774 100 0 99 Cichlidae
UpDoCat26 Synodontis obesus 677 HF565926 904 100 0 99 Cichlidae
UpDoCat27 Synodontis obesus 677 HF565926 955 100 0 99 Cichlidae
Dogfish28 Hepsetus odoe (African pike 

characin)
658 JF800936 1040 100 0 99 Hepsetidae

Tilapia29 Tilapia guineensis (Guinean 
tilapia)

651 HM882922 977 99 0 99 Cichlidae

Dogfish30 Hepsetus odoe (African pike 
characin)

658 JF800936 747 100 0 100 Hepsetidae

UpDoCat37 Synodontis sp. ES12-AT072 652 KU569037 185 100 1.00e−43 99 Cichlidae
UpDoCat38 Synodontis obesus 677 HF565926 1168 100 0 99 Cichlidae
Catfish46 Clarias gariepinus x Clarias 

batrachus
645 KR063237 1053 100 0 100 Clariidae

Dogfish47 Hepsetus odoe (African pike 
characin)

658 JF800936 1051 100 0 99 Hepsetidae

MoonFish55 Citharinus sp. JSSD-2013 657 KF541756 966 100 0 100 Citharininae
Trunkfish56 Marcusenius cyprinoides 651 HM882720 1138 100 0 100 Mormyridae
AfricanKnF60 Xenomystus nigri (African 

knifefish)
648 HM882773 1166 100 0 99 Notopteridae

GrassEater72 Distichodus rostratus 651 HM882994 1188 99 0 99 Distichodontidae
AfricanJeF73 Hemichromis letourneuxi 

(jewel fish)
646 KJ553586 1155 100 0 99 Cichlidae

Cichlid74 Chromidotilapia guntheri 
(Guenther’s mouthbrooder)

651 HM882919 981 100 0 100 Cichlidae

AfricanButCf76 Schilbe mystus 651 HM882942 1155 100 0 99 Schilbeidae
Tilapia77 Hemichromis fasciatus 651 HM882925 1177 100 0 99 Cichlidae
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2007). The detected number of 20 species, 17 genera and 12 
families in this study are lower than 70 species, 38 genera 
and 20 families that were respectively reported in a study 
involving 363 individuals (Nwani et al. 2011) and these dif-
ferences could be attributable to the discrepancies in the 
number of individuals analyzed.

There were variations within the intergeneric, conge-
neric and confamilial genetic distances thereby exposing 
the potential effectiveness of this marker in resolving spe-
cies even within genus and family. We identified different 
ranges in genetic distances within the genera and families 
as 6.90–28.1% and 16.00–25.70%, respectively and these 
values are in agreement with the work of Bingpeng et al. 
(2018). It has been reported that DNA barcoding is a stand-
ardized approach that depends on the assumption that inter-
species genetic distance or variability is greater than the one 
obtainable from intra-species (Hebert et al. 2003; Meyer and 
Paulay 2005). The highest genetic distance (interspecific 
divergence) obtained from the sequences was 37.00% and 
this is ten times higher than the one identified by Bingpeng 
et al. (2018) but supports the work of Iyiola et al. (2018). 
This implies that the genetic distance within the species is 
more than the one obtained from among them. This find-
ing is in agreement with the earlier report where genetic 
variation within the population was found to be higher 
(Ren et al. 2017). The obtained congeneric distance range 
(6.9–28.1%) from this study is higher than the 8% identi-
fied in 35 freshwater fishes in Cuban (Lara et al. 2010) and 
10.29% from Ebonyi and Anambra States of Southeastern 
Nigeria (Nwani et al. 2011). The identified K2P interge-
neric COI sequence divergence in this study ranged from 
15.800–37.00% and this value is slightly higher than the one 
(0.30–31.40%) reported by Iyiola et al. (2018), but it is in 
agreement with a previous report from COI (14.6–25.7%) 
and inter-transcribed sequence, ITS (32.8–35.0%) (Petrov 

et al. 2016). We obtained the highest intergeneric genetic 
divergence (37.00%) between Hemichromis and Par-
achanna, while the lowest value (15.80%) was found 
between Synodontis and Schilbe. This is in contrast with a 
previous research that identified the highest value (31.30%) 
between Parachanna and Malapterurus, while the lowest 
(0.30%) was between Hyperopisus and Brienomyrus (Iyi-
ola et al. 2018). This difference could possibly be linked 
to the nature of fish species analyzed in the two separate 
researches. The identified range of percentage confamilial 
genetic distances (16.00 ± 0.014–25.7 ± 0.031) corrobo-
rates with earlier reports of 20.4% from Cuban freshwater 
fishes (Lara et al. 2010), 15.38% from Canadian freshwater 
(Hubert et al. 2008) and 15.46% from Australian freshwater 
(Ward et al. 2005). Mean diversity of 22.7 ± 0.019 that was 
generated from the entire population is lower than the one 
(87.5 ± 0.089) reported by Persis et al. (2009) and this could 
be due to the heterogeneous nature of the later.

In the present study, a total of 42 haplotypes and 389 
polymorphic (variable) sites were obtained. Previous reports 
yielded 33 haplotypes and 149 polymorphic sites in 83 spec-
imens from four extant Pacifastacus species (Larson et al. 
2016); 36 haplotypes and 56 variable sites in 43 sequences 
of Steindachneridion scriptum (Paixão et al. 2018); and, 44 
haplotypes and 76 variable sites in 74 fish (Pappalardo et al. 
2015). In this study, the genetic variability (Hd = 0.999) is 
similar, but nucleotide diversity (Pi = 0.73721) is higher than 
the ones (Hd = 0.959; Pi = 0.007) reported by Paixão et al. 
(2018) from Steindachneridion scriptum; and in 68 species 
of Sicyopus zosterophorum (Hd = 0.885; Pi = 0.0039) by 
Taillebois et al. (2013). It has been reported that Tajima’s 
D-neutrality tests are applied to detect evidence of strong 
selective pressures, while Fu’s Fs-tests are used specifically 
to identify population expansion (Tajima 1989; Fu 1997). We 
detected positive values (D* = 0.2424, p > 0.10; Fu and Li’s 

bp base pair, E-value expect value

Table 4  (continued)

Sequence name BLAST hits in NCBI 
database

bp size Accession number Bit score Query cover E-value % Identity Family

UpDoCat79 Auchenoglanis occidentalis 
(bubu)

651 HM882800 1164 100 0 99 Claroteidae

RedTailedSy81 Synodontis clarias (mandi) 643 HF565869 1151 97 0 99 Cichlidae
WiheadCf83 Clarotes laticeps 651 HM882799 976 100 0 100 Claroteidae
Dogfish84 Hepsetus odoe (African pike 

characin)
651 HM882978 1184 100 0 99 Hepsetidae

Catfish87 Clarias gariepinus (North 
African catfish)

651 HM882820 1194 100 0 100 Clariidae

CfHybrid90 Clarias gariepinus (North 
African catfish)

651 KT193045 1164 100 0 99 Clariidae

TropCfish91 Clarias gariepinus (North 
African catfish)

651 KT193045 976 100 0 100 Clariidae
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D* = 2.17427, P < 0.02; Fu and Li’s F* 1.7450, p < 0.005) 
for all individuals. The positive significant values were esti-
mated for D and this shows that there are strong selective 
pressure and absence of population expansion within the 
studied population. Therefore, we accept the hypothesis of 
selective neutrality. Average nucleotide frequencies detected 
were similar to those that were previously reported in other 
studies of 577 fish specimens with base nucleotide composi-
tions of C (27.25%), T (30.74%), A (24.04%), G (17.97%) 
and A + T = 54.8 (Mabragan et al. 2011); 79 species of fish 
with C (27.53%), T (29.40%), A (24.82%), G (18.04%) and 
A + T = 54.22% (Díaz et al. 2016); two species of Hypoph-
thalmichthys molitrix (A = 31·8%, C = 26·9%, G = 15·7%, 
T = 25·6%, A + T = 57·4%), and H. nobilis (A = 31·6%, 
C = 27·1%, G = 16·0%, T = 25·3%, A + T = 56·9%) (Li et al. 
2009); 89 fish species (A = 24.12%, C = 27·28%, G = 18·2%, 
T = 30·4%, A + T = 54.52%) (Henriques et al. 2015); and the 
ones (A = 25.90%, C = 28.90%, G = 17.00% and T = 28.20%, 
A + T = 54.1) from Iyiola et al. (2018).

At the nucleotide level, the sequence alignment revealed 
much polymorphism at different consensus positions and this 
similar degree of variations had been previously observed 
in 28 species of fish (Persis et al. 2009). The existing varia-
tions show a high degree of heterogeneity within the studied 
fishes. The identified transitional mutations were more abun-
dant than the transversional ones as earlier detected in Snow 
trout (Ali et al. 2011), Engraulis encrasicolus (Pappalardo 
et al. 2015) and in Channa striata (Boonkusol and Tong-
bai 2016). There was no presence of insertions, deletions 
or stop codons in all the amplified sequences, suggesting 
composition of functional mitochondrial COI sequences as 
opined by Shen et al. (2016). Application of genomics is 
highly informative in differentiating individuals and varieties 
(Singh et al. 2014). Identification of percentage identity or 
similarity from 99–100% with the known ones in the Gen-
Bank databases was recorded across the fish species and 
this demonstrates the effectiveness of this genomics tool 
in ascertaining individual fish relatedness as previously 
reported (Debenedetti et al. 2014; Bellagamba et al. 2015; 
Abbas et al. 2017).

Conclusion

This work has successfully demonstrated the utility of COI 
gene in distinguishing even the closely related species of 
fishes. The use of phylogeny, PD, BLAST analysis, con-
generic, intergeneric and confamilial K2P-based distance 
computations contributed in identifying and character-
izing closely related species with much efficiency. Clari-
idae had the highest number of genera and families and PD 
discriminated them on the bases of genetic divergence and 
ancestral linkages. Parachanna obscura in group XVIII was 

identified to be most evolutionarily divergent and PD fur-
ther captured the shared ancestry of the fish species. Our 
results provided good insights into the phylogeny, genetic 
diversity, haplotype and nature of identified fish species in 
Enugu and Anambra States of Nigeria. The results obtained 
in this present study can facilitate decision makings and 
selections for biodiversity, breeding and conservation in 
fishery management.
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