Estimation Of The Thermochemical And Solubility Properties Of Some Nigerian Softwood

Ejikeme Chigozie M.¹, Ezeonu Chukwuma S.² and Eboatu Augustine N.³

¹Department of Chemical Sciences, Godfrey Okoye University, Thinkers Corner, Enugu, Nigeria
²Department of Biochemistry, Federal University Wukari, Taraba State, Nigeria
³Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Abstract: The abundance of softwoods in Nigeria makes them readily available and their renewability is also an advantage in generation of any product that has usefulness in scientific application. All the softwood samples investigated were soluble in hot concentrated H₂SO₄. From a measured quantity of each Nigerian softwood powder consumed in their destructive distillation, the results showed that: Tetrapleura tetraptera had appreciable quantities of wood charcoal with a maximum value of 5.2g, Allanblackia floribunda, Afzelia bella and Afrormosia laxiflora each with 4.5g also had high quantities of wood charcoal. Afzelia bipindensis, Cassipourea barteri and Khaya ivorensis each produced 3.00cm³ pyroligneous acid volume. Tar volumes of 0.25cm³ as the highest value was observed in each of Monodara tenuifolia, Anogeissus leiocarpus, Amphimas pterocarpoides, Afzelia bipindensis and Cassipourea barteri. The volumes of wood gas emitted were high. The maximum wood gas emitted showed values of 998 and 980cm³ from Afzelia bipindensis and Sacoglottis gabonensis. These thermochemicals have agricultural, industrial and domestic values.

Keywords: Solubility, Nigeria, softwood, chacoal, tar, wood gas, pyroligneous acid.

1. INTRODUCTION

Destructive distillation of woods produces distillates made up of vapours and gases as well as vapour condensates in form of tars in addition to charcoal. The thermochemicals derived from this century long process is used in production of various components useful in industrial goods and wood products. Pyroligneous acid is a waste gotten from chemical breakdown of wood by destructive conversion of wood liquid in oxygen deficient situation. During tar formation wood is gradually decomposed with heat to form an oily component which is separated from pyrolysis liquid by sedimentation [1]. Tililikka et al. [1] also explained that pyrolysis is a heat transformation reaction in which the material (wood) in oxygen deficient environment is combusted to end reaction at temperature of 500°C. The end product is solid char comprising charcoal and biochar, others consists of liquid compounds which are volatile in nature as well as gases which are highly volatile. Wood ash is produced by recovery of residues from burnt wood and woody materials [2]. Wood burning gives between 6 to 10 percent of ashes. Ash is made up of mineral elements required for growth of plants [3]. Magnesium, Potassium and Phosphorus are found in good quantities in ash, however, calcium is the most abundant element in it. Ash is also a good repository of many trace nutrient needed for plant growth and development [3]. The importance of this research is to study the quantities of thermochemical constituents of some Nigerian softwood. This has industrial importance. Sources of chemical production as well as energy generation could be initiated from fast pyrolysis of wood biomass [4]. Therefore, “wood pyrolysis is attractive because forest and industrial wood residues can be readily converted into liquid products” [4]. There are lots of advantages in transport, storage, combustion, retrofitting and flexibility in production and marketing generally when wood pyrolysis such as crude bio-oil of charcoal of water or oil exists in liquid form [5].

2. MATERIALS AND METHODS

2.1. Materials

Twenty four soft wood samples were collected, identified and stored using the methodology previously reported by Ejikeme et al. [6].

2.2. Wood Sample Preparation

Twenty four well grounded fine powdered timber softwood samples were obtained and prepared for analysis [6].

2.3. Determination of the Products of Destructive Distillation of the Wood

Each boiling tube was filled with 6.00g of the individual Nigerian softwood powder, and the
apparatus was set up as shown in Figure 1 without gas jar and Figure 2 with gas jar. Each wood sample was heated for 10 minutes to drive away the air in the apparatus before connecting the gas jar. The wood sample in each boiling tube was heated for 2 hours in the absence of air and four different fractions of substances were obtained. The substances obtained were: wood charcoal, pyrolytic acid, wood tar (ethanol was used in the extraction of the wood tar) and wood gas [7]. The substances obtained were measured and weighed to determine their actual weight present in each wood sample.

2.4. Wood Solubility

The wood solubility was determined by the method reported by Ejikeme et al. [6].

2.5. Determination of Ash Content

This measures the mineral content of the wood samples. A weighed crucible was thoroughly washed, cleaned and placed in hot air-circulation oven for 2 hours and cooled to a room temperature in a desiccator. The empty crucible was then transferred to the muffle furnace to burn off all organic matter and also to stabilize the weight of the crucible at a temperature of 600°C after which it was cooled in a desiccator at room temperature. Some 5.0g of the wood powder was defatted with 150cm3 of diethyl ether using soxhlet apparatus for 2 hours. Into the crucibles was weighed 2.0g of each defatted wood powder, placed in the muffle furnace and digested (ashed) at a temperature of 600°C for 3 hours. At end of the digestion, each ashed sample was transferred into a desiccator to cool at room temperature after which the crucible with its content was re-weighed [8]. The percentage ash content was calculated thus:

$$\%\text{Ash} = \frac{\text{crucible and Ash} - \text{Weigh of Crucible}}{\text{Weight of sample}} \times 100$$

3. RESULT

The softwood samples subjected to solubility in various solvents showed that all the wood samples had the same solubility properties. The result (Table 2) showed that the softwoods examined were insoluble in hot and cold water, dilute and concentrated HCl, dilute NaOH, ethanol and diethyl ether. Heated concentrated HCl, dilute H$_2$SO$_4$ and concentrated H$_2$SO$_4$ gave
slight solubility when the samples were exposed to them. All the softwood samples were soluble in hot concentrated H₂SO₄ (Table 2). Destructive distillation of the softwood samples showed that the wood charcoal from Tetrapleura tetraptera had the maximum value of 5.2g. Allanblackia floribunda, Afzelia bella and Afrormosia laxiflora each with 4.5g have appreciable quantities of wood charcoal. The least values of charcoal 1.5g and 1.75g were obtained in Anogeissus leiocarpus and Monodara tenuifolia. Others fell within the range of 2g and 4g as shown in Table 3. Pyroglycerine acid volume produced in Afzelia bipindensis, Cassipourea barteri and Khaya ivorensis each was 3.00cm³ while Combretodendron macrocarpum (1.5cm³) had the minimum pyroglycerine acid. There was minimal production of wood tar in all the samples. The tar volumes were between 0.1 and 0.25cm³ in the entire sample (Table 3). Monodara tenuifolia, Anogeissus leiocarpus, Amphimas pterocarpoideae, Afzelia bipindensis and Cassipourea barteri each had 0.25cm³ as the highest value. The tar volumes were between 0.1 and 0.25cm³ in the entire sample (Table 3).
ash content. Monodora tenuifolia, Anogeissus leiocarpus, Allanblackia floribunda, Albizia adianthifolia, Dichapetalum barteri and Pentaclethra macrophylla each with 2% ash content had the least value among the softwood samples. This values are at variance with ash yield obtained from softwoods grown in the temperate zones whose values fall within the range 0.1-1.0% [9, 10].

4. DISCUSSIONS

Solubility of the softwoods were shown to take place in hot concentrated H₂SO₄ (Table 2) this was supported by Horvath [11] that when the temperature of heated soft wood rises to the supercritical condition, then all the extractives together with cellulose components become soluble. Slight solubility was recorded in dilute H₂SO₄, concentrated H₂SO₄ and concentrated but

<table>
<thead>
<tr>
<th>S/N</th>
<th>Wood Sample (Botanic names)</th>
<th>Hot and cold water</th>
<th>1.0M Dilute HCl</th>
<th>Concentrated HCl + heat</th>
<th>1.0M Dilute H₂SO₄</th>
<th>Concentrated H₂SO₄ + heat</th>
<th>1% NaOH</th>
<th>Ethanol</th>
<th>Diethyl ether</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Monodora tenuifolia</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>2.</td>
<td>Moringa oleifera</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>3.</td>
<td>Protea elliotii</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>4.</td>
<td>Barteria nigritiana</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>5.</td>
<td>Anogeissus leiocarpus</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>6.</td>
<td>Allanblackia floribunda</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>7.</td>
<td>Glyphea brevis</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>8.</td>
<td>Sterculia oblonga</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>9.</td>
<td>Uapaca guineensis</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>10.</td>
<td>Amphimas pterocarpoides</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>11.</td>
<td>Albizia adianthifolia</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>12.</td>
<td>Dichapetalum barteri</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>13.</td>
<td>Afzelia bipindensis</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>14.</td>
<td>Afzelia bella</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>15.</td>
<td>Dichrostacys cinerea</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>16.</td>
<td>Pentaclethra macrophylla</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>17.</td>
<td>Tetrapleura tetraperta</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>18.</td>
<td>Afromosia laxiflora</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>19.</td>
<td>Saccoglottis gabonensis</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>20.</td>
<td>Cassipourea barteri</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>21.</td>
<td>Combretodendron macrocarpum</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>22.</td>
<td>Cordia millenii</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>23.</td>
<td>Khaya ivorensis</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>24.</td>
<td>Kaempferia galanga</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Slightly Soluble</td>
<td>Slightly Soluble</td>
<td>Soluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
</tbody>
</table>
heated HCl. This observation confirmed the statement by Horvath [11] that “most of the nonstructural wood constituents can be removed by extraction with suitable solvents, such as water, acetone, benzene, ether, ethanol, dichloromethane, methanol, hexane, toluene, tetrahydrofuran, and petrol ether. These solvents can be divided into hydrophilic (acetone, ethanol) and lipophilic (benzene, ether, petrol ether) compounds”. Therefore, some of those solvents could actually be used for extracting nonstructural wood constituents. From the results, hot concentrated H₂SO₄ is a suitable solvent for dissolving the softwoods investigated. The samples remained insoluble in hot and cold water, dilute HCl, concentrated HCl, NaOH, ethanol and diethyl ether [6]. The implication of being non dissoluble in most of the solvents investigated shows the resilience of these softwoods. Thus most of them are good for use in boat making, bridge construction, doors and furniture making, house construction and other timber uses. Therefore, they will be able to withstand daily chemical reactions, enzyme and microbial activities as well as other elements in the environment.

The destructive distillation of each softwood sample in this research showed that the wood charcoal from Tetrapleura tetraptera, Allanblackia floribunda, Afzelia bella and Afromosia laxiflora each have appreciable quantities of wood charcoal. The general range of charcoal in all the softwoods examined was 1.5–5.2g, thus, softwoods are great sources of charcoal. The implication of this is that they have great potential for different domestic and industrial purposes such as; cooking, water treatment (activated charcoal), removal of pesticides, dermal care, whitening of teeth (powdered activated charcoal), mulching, for moisture absorption in bathrooms and household appliances.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Wood Sample (Botanical Name)</th>
<th>Wood Charcoal (g)</th>
<th>Pyroligneous Acid (cm³)</th>
<th>Wood Tar (cm³)</th>
<th>Wood Gas (cm³)</th>
<th>Ash Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Monodara tenuifolia</td>
<td>3.5</td>
<td>2.25</td>
<td>0.25</td>
<td>760</td>
<td>2.0</td>
</tr>
<tr>
<td>2.</td>
<td>Moringa oleifera</td>
<td>3.5</td>
<td>2.0</td>
<td>0.1</td>
<td>720</td>
<td>2.5</td>
</tr>
<tr>
<td>3.</td>
<td>Protea elliotii</td>
<td>4.0</td>
<td>1.75</td>
<td>0.1</td>
<td>810</td>
<td>4.0</td>
</tr>
<tr>
<td>4.</td>
<td>Barteria nigritian</td>
<td>2.5</td>
<td>2.0</td>
<td>0.1</td>
<td>695</td>
<td>2.5</td>
</tr>
<tr>
<td>5.</td>
<td>Anogeissus leocarpus</td>
<td>1.5</td>
<td>2.25</td>
<td>0.25</td>
<td>625</td>
<td>2.0</td>
</tr>
<tr>
<td>6.</td>
<td>Allanblackia floribunda</td>
<td>4.5</td>
<td>2.5</td>
<td>0.1</td>
<td>815</td>
<td>2.0</td>
</tr>
<tr>
<td>7.</td>
<td>Glyphea brevis</td>
<td>3.0</td>
<td>2.25</td>
<td>0.2</td>
<td>650</td>
<td>2.5</td>
</tr>
<tr>
<td>8.</td>
<td>Sterculia oblonga</td>
<td>3.0</td>
<td>2.0</td>
<td>0.2</td>
<td>512</td>
<td>2.5</td>
</tr>
<tr>
<td>9.</td>
<td>Uapaca guineensis</td>
<td>2.5</td>
<td>3.0</td>
<td>0.2</td>
<td>809</td>
<td>3.0</td>
</tr>
<tr>
<td>10.</td>
<td>Amphimas pterocarpoides</td>
<td>3.0</td>
<td>2.5</td>
<td>0.25</td>
<td>782</td>
<td>2.5</td>
</tr>
<tr>
<td>11.</td>
<td>Albizia adianthifolia</td>
<td>3.0</td>
<td>2.25</td>
<td>0.2</td>
<td>930</td>
<td>2.0</td>
</tr>
<tr>
<td>12.</td>
<td>Dichapetalum barteri</td>
<td>3.5</td>
<td>2.0</td>
<td>0.1</td>
<td>727</td>
<td>2.0</td>
</tr>
<tr>
<td>13.</td>
<td>Afzelia bipindensis</td>
<td>2.5</td>
<td>3.0</td>
<td>0.25</td>
<td>998</td>
<td>3.5</td>
</tr>
<tr>
<td>14.</td>
<td>Afzelia bella</td>
<td>4.5</td>
<td>2.25</td>
<td>0.1</td>
<td>630</td>
<td>2.5</td>
</tr>
<tr>
<td>15.</td>
<td>Dichrostachys cinerea</td>
<td>3.5</td>
<td>2.0</td>
<td>0.1</td>
<td>643</td>
<td>2.5</td>
</tr>
<tr>
<td>16.</td>
<td>Pentaclethra macrophylla</td>
<td>3.0</td>
<td>2.25</td>
<td>0.2</td>
<td>651</td>
<td>2.0</td>
</tr>
<tr>
<td>17.</td>
<td>Tetrapleura tetraptera</td>
<td>5.2</td>
<td>1.9</td>
<td>0.1</td>
<td>590</td>
<td>3.5</td>
</tr>
<tr>
<td>18.</td>
<td>Afromosia laxiflora</td>
<td>4.5</td>
<td>2.25</td>
<td>0.1</td>
<td>832</td>
<td>4.0</td>
</tr>
<tr>
<td>19.</td>
<td>Sacoglottis gabonensis</td>
<td>1.75</td>
<td>2.25</td>
<td>0.2</td>
<td>980</td>
<td>5.0</td>
</tr>
<tr>
<td>20.</td>
<td>Cassipourea barteri</td>
<td>2.0</td>
<td>3.0</td>
<td>0.25</td>
<td>610</td>
<td>5.5</td>
</tr>
<tr>
<td>21.</td>
<td>Combretodendron macrocarpum</td>
<td>4.0</td>
<td>1.5</td>
<td>0.1</td>
<td>726</td>
<td>5.0</td>
</tr>
<tr>
<td>22.</td>
<td>Cordial millenii</td>
<td>2.0</td>
<td>2.25</td>
<td>0.2</td>
<td>902</td>
<td>2.5</td>
</tr>
<tr>
<td>23.</td>
<td>Khaya ivorensis</td>
<td>4.0</td>
<td>3.0</td>
<td>0.1</td>
<td>811</td>
<td>2.5</td>
</tr>
<tr>
<td>24.</td>
<td>Kaempferia galangal</td>
<td>3.5</td>
<td>2.0</td>
<td>0.1</td>
<td>780</td>
<td>3.5</td>
</tr>
</tbody>
</table>
prevent rusts in tools, treatment of alcohol poisoning and hangover, anti venom removal of toxin in animals, buffer against drug overdose and prevention of root rots in plants.

Pyrolygineous acid volume produced in *Afzelia bipindensis*, *Cassipourea barteri* and *Khaya ivorensis* were appreciable (Table 3). According to Dobele et al. [12] “technologies for fast pyrolysis of wood are progressing rapidly, which enables the conversion of solid wood biomass into a liquid product – bio-oil, which can be used as a fuel or as a raw material for producing valuable chemicals”. Jahirul et al. [13] stated that “fast pyrolysis produces 60%–75% of oily products (oil and other liquids)”. Jahirul et al. [13] summarizes uses of pyrolysis bio-oil as: fuels (Hydrogen and fuel via syngas), chemicals (resins, fertilizer, flavours, adhesive, acetic acid, and industrial feedstock), heat (for co-firing of boiler and furnace) and power (diesel engine and turbine). Other importance of pyrolygineous acids include use in the production of essential oil (e.g. clover oil) biopesticides (canola oil) [1], botanical oils for insect control [14, 15].

Wood tar from this research showed that *Monodara tenuifolia*, *Anogeissus leiocarpus*, *Amphimas pterocarpoidea*, *Afzelia bipindensis* and *Cassipourea barteri* had the highest quantity of the lot examined. Some known uses of wood tars include coating for wooden boats as waterproofing agent, adhesives applications, use in soap, cosmetics, dye and medical applications. Wood tars have protective effect on the wood, especially from insects.

The highest component in the destructive distillation of wood apart from charcoal is wood ash. Many uses are made of wood ash in domestic, agricultural and industrial application. Wood ash can be used on some agricultural soils to enhance crop production by raising soil pH (liming) as well as for landfill purposes [16]. Jayalakshini et al. [17] explained that “wood ash improves soil texture, bulk density, permeability, water holding capacity/porosity/aeration, fertility status, resistance to pest attack, and reduces crust formation”. Ashes from woods are used traditionally in the production of soap and as well as catalysts in production of fermented food substances and cooking of foods.

The volumes of wood gases from these samples are appreciable as depicted from the result. The importance of gases generated in the destructive distillation of woods is generally needed for energy generation. Oluoti et al. [18] is in agreement to the fact that energy is paramount in biomass consumption when they stated that “besides using wood as fuel for cooking, gasification of these resources offers a better option for producing power, heat and biofuels for a wider variety of applications and that wood gas produces raw synthetic gas (CO + H2), hydrogen and some other minor byproducts. The syngas is cleaned and eventually used to generate electricity”, it can also be converted to methanol, natural gas and biodiesel for use in gas generators, cars and local heating grid. Wood gas use has been quite old. It was popular during World War II. Breag, and Chittenden [19] explained that “by 1945 the gas was being used to power trucks, buses and agricultural as well as industrial machines. It is estimated that there were close to 9,000,000 vehicles running on producer gas all over the world, however the discovery of fossil oil caused decline in exploitation of biomass based gas”.

CONCLUSION

Careful harnessing of the components of destructive distillation of woods generally, *ipsa facto* Nigerian softwoods can be of agricultural, industrial and domestic uses. This however, needs the appropriate technology to be effective. This research established the thermochemical components present in Nigerian softwoods, their quantification as well as solubility properties of the various softwood examined. It also looked into the possible application of these components.

REFERENCE

